Background The mechanisms leading to dieback and death of trees under drought remain unclear. To gain an understanding of these mechanisms, addressing major empirical gaps regarding tree structure-function relations remains essential.Scope We give reasons to think that a central factor shaping plant form and function is selection simultaneously favouring constant leaf-specific conductance with height growth and isometric (1:1) scaling between leaf area and the volume of metabolically active sink tissues ('sapwood'). Sapwood volume-leaf area isometry implies that per-leaf area sapwood volumes become transversely narrower with height growth; we call this 'stretching'. Stretching means that selection must favour increases in permeability above and beyond that afforded by tip-to-base conduit widening ("ultra-widening permeability"), via fewer and wider vessels or tracheids with larger pits or larger margo openings. Leaf area-metabolically active sink tissue isometry would mean that it is unlikely that larger trees die during drought because of carbon starvation due to greater sink-source relationships as compared to shorter plants. Instead, an increase in permeability is most plausibly associated with greater risk of embolism, and this seems a more probable explanation of the preferential vulnerability of larger trees to climate change-induced drought. Other implications of selection favouring constant per-leaf area sapwood construction and maintenance costs are departure from the da Vinci rule expectation of similar sapwood areas across branching orders, and that extensive conduit furcation in the stem seems unlikely.Conclusions Because all these considerations impact the likelihood of vulnerability to hydraulic failure versus carbon starvation, both implicated as key suspects in forest mortality, we suggest that these predictions represent essential priorities for empirical testing.

Stretched sapwood, ultra-widening permeability and ditching da Vinci: revising models of plant form and function

Anfodillo, Tommaso;
2024

Abstract

Background The mechanisms leading to dieback and death of trees under drought remain unclear. To gain an understanding of these mechanisms, addressing major empirical gaps regarding tree structure-function relations remains essential.Scope We give reasons to think that a central factor shaping plant form and function is selection simultaneously favouring constant leaf-specific conductance with height growth and isometric (1:1) scaling between leaf area and the volume of metabolically active sink tissues ('sapwood'). Sapwood volume-leaf area isometry implies that per-leaf area sapwood volumes become transversely narrower with height growth; we call this 'stretching'. Stretching means that selection must favour increases in permeability above and beyond that afforded by tip-to-base conduit widening ("ultra-widening permeability"), via fewer and wider vessels or tracheids with larger pits or larger margo openings. Leaf area-metabolically active sink tissue isometry would mean that it is unlikely that larger trees die during drought because of carbon starvation due to greater sink-source relationships as compared to shorter plants. Instead, an increase in permeability is most plausibly associated with greater risk of embolism, and this seems a more probable explanation of the preferential vulnerability of larger trees to climate change-induced drought. Other implications of selection favouring constant per-leaf area sapwood construction and maintenance costs are departure from the da Vinci rule expectation of similar sapwood areas across branching orders, and that extensive conduit furcation in the stem seems unlikely.Conclusions Because all these considerations impact the likelihood of vulnerability to hydraulic failure versus carbon starvation, both implicated as key suspects in forest mortality, we suggest that these predictions represent essential priorities for empirical testing.
2024
File in questo prodotto:
File Dimensione Formato  
Anfodillo & Olson AoB_2024.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Altro
Dimensione 2.32 MB
Formato Adobe PDF
2.32 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3523173
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact