The Western Pacific Coasts (WPC) are the outlets of many large Asian rivers. In recent years, the interplay of climate changes and human activities has persistently altered the suspended sediment concentrations (SSC) in the WPC, triggering substantial shifts in coastal ecosystems. However, the scarcity of coastal observation stations hampered comprehensive investigations at large scales. This study employed three representative SSC retrieval models and utilized Landsat images acquired from 1990 to 2020 to estimate the SSC in the WPC with a focused endeavor to dissect the intricate spatial and temporal variability of SSC in the region. The findings revealed the following insights: (1) The outcomes derived from the three distinct SSC models consistently manifested a discernible decreasing pattern in SSC changes over the past three decades across all six major estuaries (Liao River Estuary, Yellow River Estuary, Yangtze River Estuary, Hangzhou Bay, Pearl River Estuary, and Mekong River Estuary). (2) The seasonal attributes of the six major estuaries differed, primarily due to distinct dominant influencing factors like precipitation, upstream sediment load, wind, and tides. (3) Collectively, SSC tends to be relatively higher in the Yangtze River Estuary, Hangzhou Bay, and Yellow River Estuary, while the Pearl River and Mekong River Estuaries exhibit relatively lower levels. Notably, the SSC exhibited distinct spatial traits along the coastlines of different estuaries. (4) SSC in the non-estuarine regions along the WPC, a similar significant declining trend in SSC is observed as in the estuaries, albeit the rate of decline generally appeared to be less pronounced. Furthermore, regions with faster rates of SSC reduction are typically concentrated near major estuaries in the northern part of the Coasts. The decline in estuarine SSC plays an important role in the overall decrease in SSC across the WPC. These study outcomes held substantial significance for advancing the stability and sustainable evolution of the WPC.

Mapping Suspended Sediment Changes in the Western Pacific Coasts

Cao, Bowen;Qiu, Junliang;
2023

Abstract

The Western Pacific Coasts (WPC) are the outlets of many large Asian rivers. In recent years, the interplay of climate changes and human activities has persistently altered the suspended sediment concentrations (SSC) in the WPC, triggering substantial shifts in coastal ecosystems. However, the scarcity of coastal observation stations hampered comprehensive investigations at large scales. This study employed three representative SSC retrieval models and utilized Landsat images acquired from 1990 to 2020 to estimate the SSC in the WPC with a focused endeavor to dissect the intricate spatial and temporal variability of SSC in the region. The findings revealed the following insights: (1) The outcomes derived from the three distinct SSC models consistently manifested a discernible decreasing pattern in SSC changes over the past three decades across all six major estuaries (Liao River Estuary, Yellow River Estuary, Yangtze River Estuary, Hangzhou Bay, Pearl River Estuary, and Mekong River Estuary). (2) The seasonal attributes of the six major estuaries differed, primarily due to distinct dominant influencing factors like precipitation, upstream sediment load, wind, and tides. (3) Collectively, SSC tends to be relatively higher in the Yangtze River Estuary, Hangzhou Bay, and Yellow River Estuary, while the Pearl River and Mekong River Estuaries exhibit relatively lower levels. Notably, the SSC exhibited distinct spatial traits along the coastlines of different estuaries. (4) SSC in the non-estuarine regions along the WPC, a similar significant declining trend in SSC is observed as in the estuaries, albeit the rate of decline generally appeared to be less pronounced. Furthermore, regions with faster rates of SSC reduction are typically concentrated near major estuaries in the northern part of the Coasts. The decline in estuarine SSC plays an important role in the overall decrease in SSC across the WPC. These study outcomes held substantial significance for advancing the stability and sustainable evolution of the WPC.
2023
File in questo prodotto:
File Dimensione Formato  
Mapping Suspended Sediment Changes in the Western Pacific Coasts.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 25.37 MB
Formato Adobe PDF
25.37 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3521678
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact