This study investigates the tempering behavior of bainite and martensite in a medium carbon, high silicon steel, with a focus on the microstructural evolution and the attainment of equilibrium, over a temperature range of 200–650 °C. The dissimilarities between the characteristics of the two initial microstructures, both comprising a C-saturated tetragonal ferrite matrix and retained austenite, are reflected in the differences observed in their evolution towards equilibrium as the tempering temperature increases. Therefore, while retained austenite plays a pivotal role in the bainitic microstructure, in the martensitic microstructure it is the ferritic matrix, which is highly dislocated and enriched in carbon, that plays a determinant role. The findings demonstrate that while both bainite and martensite can converge towards the same equilibrium state upon high-temperature tempering (600–650 °C), the pathway to this convergence is markedly different, with bainite exhibiting a slower tra...
Study of bainite and martensite tempering in a medium C high Si steel. microstructural disparities and equilibrium convergence
Mattia Franceschi;Manuele Dabala;
2024
Abstract
This study investigates the tempering behavior of bainite and martensite in a medium carbon, high silicon steel, with a focus on the microstructural evolution and the attainment of equilibrium, over a temperature range of 200–650 °C. The dissimilarities between the characteristics of the two initial microstructures, both comprising a C-saturated tetragonal ferrite matrix and retained austenite, are reflected in the differences observed in their evolution towards equilibrium as the tempering temperature increases. Therefore, while retained austenite plays a pivotal role in the bainitic microstructure, in the martensitic microstructure it is the ferritic matrix, which is highly dislocated and enriched in carbon, that plays a determinant role. The findings demonstrate that while both bainite and martensite can converge towards the same equilibrium state upon high-temperature tempering (600–650 °C), the pathway to this convergence is markedly different, with bainite exhibiting a slower tra...File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S2238785424019318-main_compressed.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
1.04 MB
Formato
Adobe PDF
|
1.04 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.