Global warming has prompted globally widespread permafrost thawing, resulting in enhanced greenhouse gas release into the atmosphere. Studies conducted in the Northern Hemisphere reveal an alarming increase in permafrost thawing. However, similar data from Antarctica are scarce. We conducted a 2‐D Deep Electrical Resistivity Tomography (DERT) in Taylor Valley, Antarctica, to image the distribution of permafrost, its thicknesses, lower boundaries, and hydrogeology. Results show resistive, discontinuous domains that we suggest represent permafrost units. We also find highly conductive layers (5–10 Ω·m), between 300–350 m and 600–650 m below ground level and a shallower (∼50–100 m depth) conductive layer. The combined data set reveals a broad brine system in Taylor Valley, implying multi‐tiered groundwater circulation: a shallow, localized system linked with surface water bodies and a separate deeper, regional circulation system. The arrangement of these brines across different levels, coupled with the uneven permafrost distribution, underscores potential interplay between the two systems.

Permafrost hydrogeology of Taylor Valley, Antarctica: insights from Deep Electrical Resistivity Tomography

Claudio Mazzoli;
2024

Abstract

Global warming has prompted globally widespread permafrost thawing, resulting in enhanced greenhouse gas release into the atmosphere. Studies conducted in the Northern Hemisphere reveal an alarming increase in permafrost thawing. However, similar data from Antarctica are scarce. We conducted a 2‐D Deep Electrical Resistivity Tomography (DERT) in Taylor Valley, Antarctica, to image the distribution of permafrost, its thicknesses, lower boundaries, and hydrogeology. Results show resistive, discontinuous domains that we suggest represent permafrost units. We also find highly conductive layers (5–10 Ω·m), between 300–350 m and 600–650 m below ground level and a shallower (∼50–100 m depth) conductive layer. The combined data set reveals a broad brine system in Taylor Valley, implying multi‐tiered groundwater circulation: a shallow, localized system linked with surface water bodies and a separate deeper, regional circulation system. The arrangement of these brines across different levels, coupled with the uneven permafrost distribution, underscores potential interplay between the two systems.
File in questo prodotto:
File Dimensione Formato  
Romano et al (2024) - Geophys Res Lett.pdf

accesso aperto

Descrizione: Romano et al (2024) - Geophys Res Lett
Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 4.13 MB
Formato Adobe PDF
4.13 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3521383
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact