Peridynamics is a nonlocal theory that can effectively handle discontinuities, including crack initiation and propagation. However, near the boundaries, the incomplete nonlocal regions are the cause of the peridynamic surface effect, resulting in unphysical stiffness variation. Additionally, imposing local boundary conditions in a peridynamic (nonlocal) model is often necessary. To address these issues, the surface node method has been proposed for improving accuracy near the boundaries of the body. Although this method has been verified for a variety of problems, it has not been applied for elastodynamic problems involving Neumann boundary conditions. In this work we show a numerical example of this case, comparing the results with the corresponding peridynamic analytical solution. The numerical results exhibit no stiffness variations near the boundaries throughout the entire simulation timespan. Therefore, we conclude that the surface node method allows to effectively solve elastodyn...

Surface node method for the peridynamic simulation of elastodynamic problems with Neumann boundary conditions

Scabbia F.
;
Zaccariotto M.;Galvanetto U.
2023

Abstract

Peridynamics is a nonlocal theory that can effectively handle discontinuities, including crack initiation and propagation. However, near the boundaries, the incomplete nonlocal regions are the cause of the peridynamic surface effect, resulting in unphysical stiffness variation. Additionally, imposing local boundary conditions in a peridynamic (nonlocal) model is often necessary. To address these issues, the surface node method has been proposed for improving accuracy near the boundaries of the body. Although this method has been verified for a variety of problems, it has not been applied for elastodynamic problems involving Neumann boundary conditions. In this work we show a numerical example of this case, comparing the results with the corresponding peridynamic analytical solution. The numerical results exhibit no stiffness variations near the boundaries throughout the entire simulation timespan. Therefore, we conclude that the surface node method allows to effectively solve elastodyn...
2023
Materials Research Proceedings, Aeronautics and Astronautics – AIDAA XXVII International congress
27th Congress of the Italian Association of Aeronautics and Astronautics, AIDAA 2023
File in questo prodotto:
File Dimensione Formato  
66.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 463.3 kB
Formato Adobe PDF
463.3 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3519962
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact