We prove sharp upper bounds for the first and second non-trivial eigenvalues of the Neumann Laplacian in two classes of domains: parallelograms and domains of constant width. This gives in particular a new proof of an isoperimetric inequality for parallelograms recently obtained by A. Henrot, A. Lemenant and I. Lucardesi.
Estimates for the lowest Neumann eigenvalues of parallelograms and domains of constant width
Lena C.;
2024
Abstract
We prove sharp upper bounds for the first and second non-trivial eigenvalues of the Neumann Laplacian in two classes of domains: parallelograms and domains of constant width. This gives in particular a new proof of an isoperimetric inequality for parallelograms recently obtained by A. Henrot, A. Lemenant and I. Lucardesi.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
A19-neumann.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
367.4 kB
Formato
Adobe PDF
|
367.4 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.