We prove sharp upper bounds for the first and second non-trivial eigenvalues of the Neumann Laplacian in two classes of domains: parallelograms and domains of constant width. This gives in particular a new proof of an isoperimetric inequality for parallelograms recently obtained by A. Henrot, A. Lemenant and I. Lucardesi.

Estimates for the lowest Neumann eigenvalues of parallelograms and domains of constant width

Lena C.;
2024

Abstract

We prove sharp upper bounds for the first and second non-trivial eigenvalues of the Neumann Laplacian in two classes of domains: parallelograms and domains of constant width. This gives in particular a new proof of an isoperimetric inequality for parallelograms recently obtained by A. Henrot, A. Lemenant and I. Lucardesi.
File in questo prodotto:
File Dimensione Formato  
A19-neumann.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 367.4 kB
Formato Adobe PDF
367.4 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3517657
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact