The pathophysiology of Adolescent Idiopathic Scoliosis (AIS) is not yet fully understood, but multifactorial hypotheses have been proposed that include defective central nervous system (CNS) control of posture, biomechanics, and body schema alterations. To deepen CNS control of posture in AIS, electroencephalographic (EEG) activity during a simple balance task in adolescents with and without AIS was parsed into EEG microstates. Microstates are quasi-stable spatial distributions of the electric potential of the brain that last tens of milliseconds. The spatial distribution of the EEG characterised by the orientation from left-frontal to right-posterior remains stable for a greater amount of time in AIS compared to controls. This spatial distribution of EEG, commonly named in the literature as class B, has been found to be correlated with the visual resting state network. Both vision and proprioception networks provide critical information in mapping the extrapersonal environment. This neurophysiological marker probably unveils an alteration in the postural control mechanism in AIS, suggesting a higher information processing load due to the increased postural demands caused by scoliosis.

EEG Microstate as a Marker of Adolescent Idiopathic Scoliosis

Rubega M.;Passarotto E.;Paramento M.;Formaggio E.;Masiero S.
2024

Abstract

The pathophysiology of Adolescent Idiopathic Scoliosis (AIS) is not yet fully understood, but multifactorial hypotheses have been proposed that include defective central nervous system (CNS) control of posture, biomechanics, and body schema alterations. To deepen CNS control of posture in AIS, electroencephalographic (EEG) activity during a simple balance task in adolescents with and without AIS was parsed into EEG microstates. Microstates are quasi-stable spatial distributions of the electric potential of the brain that last tens of milliseconds. The spatial distribution of the EEG characterised by the orientation from left-frontal to right-posterior remains stable for a greater amount of time in AIS compared to controls. This spatial distribution of EEG, commonly named in the literature as class B, has been found to be correlated with the visual resting state network. Both vision and proprioception networks provide critical information in mapping the extrapersonal environment. This neurophysiological marker probably unveils an alteration in the postural control mechanism in AIS, suggesting a higher information processing load due to the increased postural demands caused by scoliosis.
File in questo prodotto:
File Dimensione Formato  
EEG_Microstate_as_a_Marker_of_Adolescent_Idiopathic_Scoliosis.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 5.66 MB
Formato Adobe PDF
5.66 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3517045
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact