Skeletal muscle atrophy is characterized by a decrease in muscle mass and strength caused by an imbalance in protein synthesis and degradation. This process naturally occurs upon reduced or absent physical activity, often related to illness, forced bed rest, or unhealthy lifestyles. Currently, no treatment is available for atrophy, and it can only be prevented by overloading exercise, causing severe problems for patients who cannot exercise due to chronic diseases, disabilities, or being bedridden. The two murine models commonly used to induce muscle atrophy are hindlimb suspension and ankle joint immobilization, both of which come with criticalities. The lack of treatments and the relevance of this atrophic process require a unilateral, safe, and robust model to induce muscle atrophy. In this work, we designed and developed a 3D-printed cast to be used for the study of disuse skeletal muscle atrophy. Applying two halves of the cast is non-invasive, producing little to no swelling or skin damage. The application of the cast induces, in 2-weeks immobilized leg, the activation of atrophy-related genes, causing a muscle weight loss up to 25% in the gastrocnemius muscle, and 31% in the soleus muscle of the immobilized leg compared to the control leg. The cross-sectional area of the fibers is decreased by 31% and 34% respectively, with a peculiar effect on fiber types. In the immobilized gastrocnemius, absolute muscle force is reduced by 38%, while normalized force is reduced by 16%. The contralateral leg did not show signs of overload or hypertrophy when compared to free roaming littermates, offering a good internal control over the immobilized limb. Upon removing the cast, the mice effectively recovered mass and force in 3 weeks.

Custom-made 3D-printed boot as a model of disuse-induced atrophy in murine skeletal muscle

Masiero, Giulio;Ferrarese, Giulia;Baraldo, Martina;Nogara, Leonardo
Funding Acquisition
;
Tezze, Caterina
2024

Abstract

Skeletal muscle atrophy is characterized by a decrease in muscle mass and strength caused by an imbalance in protein synthesis and degradation. This process naturally occurs upon reduced or absent physical activity, often related to illness, forced bed rest, or unhealthy lifestyles. Currently, no treatment is available for atrophy, and it can only be prevented by overloading exercise, causing severe problems for patients who cannot exercise due to chronic diseases, disabilities, or being bedridden. The two murine models commonly used to induce muscle atrophy are hindlimb suspension and ankle joint immobilization, both of which come with criticalities. The lack of treatments and the relevance of this atrophic process require a unilateral, safe, and robust model to induce muscle atrophy. In this work, we designed and developed a 3D-printed cast to be used for the study of disuse skeletal muscle atrophy. Applying two halves of the cast is non-invasive, producing little to no swelling or skin damage. The application of the cast induces, in 2-weeks immobilized leg, the activation of atrophy-related genes, causing a muscle weight loss up to 25% in the gastrocnemius muscle, and 31% in the soleus muscle of the immobilized leg compared to the control leg. The cross-sectional area of the fibers is decreased by 31% and 34% respectively, with a peculiar effect on fiber types. In the immobilized gastrocnemius, absolute muscle force is reduced by 38%, while normalized force is reduced by 16%. The contralateral leg did not show signs of overload or hypertrophy when compared to free roaming littermates, offering a good internal control over the immobilized limb. Upon removing the cast, the mice effectively recovered mass and force in 3 weeks.
2024
File in questo prodotto:
File Dimensione Formato  
journal.pone.0304380.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 3.47 MB
Formato Adobe PDF
3.47 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3516498
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact