Melanin-based color polymorphism is predicted to evolve and maintain through differential fitness of morphs in different environments, and several empirical studies indicate that life history strategies, physiology, and behavior vary among color morphs. Sex allocation theory predicts that parents should adjust their sex allocation based on differential costs of raising sons and daughters, and therefore, color morphs are expected to modify their brood sex ratio decisions. In color polymorphic tawny owls (Strix aluco), the pheomelanistic brown morph is associated with higher energy requirements, faster growth, and higher parental effort than the gray morph. As hypothesized, we find that brown tawny owl mothers produced more daughters in early broods and more males in late broods, whereas gray mothers did the opposite. At fledging, daughters of early broods and of brown mothers were heavier than those of late broods or gray mothers. Hence, larger and more costly daughters appeared to benefit more than males from being born to brown mothers early in the season. Brown mothers breeding later in the season produced more cheap sons, while gray mothers face fewer challenges under limited resources and favor daughters. These findings suggest that environmental conditions influence brood sex allocation strategies of genetically determined color morphs differently.
Sex allocation is color morph-specifc and associated with fedging condition in a wild bird
Chiara Morosinotto;
2024
Abstract
Melanin-based color polymorphism is predicted to evolve and maintain through differential fitness of morphs in different environments, and several empirical studies indicate that life history strategies, physiology, and behavior vary among color morphs. Sex allocation theory predicts that parents should adjust their sex allocation based on differential costs of raising sons and daughters, and therefore, color morphs are expected to modify their brood sex ratio decisions. In color polymorphic tawny owls (Strix aluco), the pheomelanistic brown morph is associated with higher energy requirements, faster growth, and higher parental effort than the gray morph. As hypothesized, we find that brown tawny owl mothers produced more daughters in early broods and more males in late broods, whereas gray mothers did the opposite. At fledging, daughters of early broods and of brown mothers were heavier than those of late broods or gray mothers. Hence, larger and more costly daughters appeared to benefit more than males from being born to brown mothers early in the season. Brown mothers breeding later in the season produced more cheap sons, while gray mothers face fewer challenges under limited resources and favor daughters. These findings suggest that environmental conditions influence brood sex allocation strategies of genetically determined color morphs differently.| File | Dimensione | Formato | |
|---|---|---|---|
|
Tooth et al 2024 Behav Ecol.pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Creative commons
Dimensione
936.33 kB
Formato
Adobe PDF
|
936.33 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




