Given a scheme over a complete discrete valuation ring of mixed characteristic with perfect residue field, the Greenberg transform produces a new scheme over the residue field thicker than the special fiber. In this paper, we will generalize this transform to the case of imperfect residue field. We will then construct a certain kind of cycle class map defined on this generalized Greenberg transform applied to the Néron model of a semi-abelian variety, which takes values in the relatively perfect nearby cycle functor defined by Kato and the second author.
The relatively perfect Greenberg transform and cycle class maps
Bertapelle, Alessandra;
2024
Abstract
Given a scheme over a complete discrete valuation ring of mixed characteristic with perfect residue field, the Greenberg transform produces a new scheme over the residue field thicker than the special fiber. In this paper, we will generalize this transform to the case of imperfect residue field. We will then construct a certain kind of cycle class map defined on this generalized Greenberg transform applied to the Néron model of a semi-abelian variety, which takes values in the relatively perfect nearby cycle functor defined by Kato and the second author.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
s00229-024-01576-w.pdf
Accesso riservato
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Accesso privato - non pubblico
Dimensione
596.71 kB
Formato
Adobe PDF
|
596.71 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
2009.05084v3.pdf
accesso aperto
Tipologia:
Preprint (AM - Author's Manuscript - submitted)
Licenza:
Altro
Dimensione
519.04 kB
Formato
Adobe PDF
|
519.04 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




