Given a scheme over a complete discrete valuation ring of mixed characteristic with perfect residue field, the Greenberg transform produces a new scheme over the residue field thicker than the special fiber. In this paper, we will generalize this transform to the case of imperfect residue field. We will then construct a certain kind of cycle class map defined on this generalized Greenberg transform applied to the Néron model of a semi-abelian variety, which takes values in the relatively perfect nearby cycle functor defined by Kato and the second author.

The relatively perfect Greenberg transform and cycle class maps

Bertapelle, Alessandra;
2024

Abstract

Given a scheme over a complete discrete valuation ring of mixed characteristic with perfect residue field, the Greenberg transform produces a new scheme over the residue field thicker than the special fiber. In this paper, we will generalize this transform to the case of imperfect residue field. We will then construct a certain kind of cycle class map defined on this generalized Greenberg transform applied to the Néron model of a semi-abelian variety, which takes values in the relatively perfect nearby cycle functor defined by Kato and the second author.
File in questo prodotto:
File Dimensione Formato  
s00229-024-01576-w.pdf

Accesso riservato

Tipologia: Published (Publisher's Version of Record)
Licenza: Accesso privato - non pubblico
Dimensione 596.71 kB
Formato Adobe PDF
596.71 kB Adobe PDF Visualizza/Apri   Richiedi una copia
2009.05084v3.pdf

accesso aperto

Tipologia: Preprint (AM - Author's Manuscript - submitted)
Licenza: Altro
Dimensione 519.04 kB
Formato Adobe PDF
519.04 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3515849
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact