In the race to curb energy and oil consumption, zeroing of wall frictional forces is highly desirable. The turbulent skin friction drag at the solid/liquid interface is responsible for substantial energy losses when conveying liquids through hydraulic networks, contributing approximately 10% to the global electric energy consumption. Despite extensive research, efficient drag reduction strategies effectively applicable in different flow regimes are still unavailable. Here, we use a wall-attached magnetic fluid film to achieve a wall drag reduction of up to 90% in channel flow. Using optical measurements supported by modelling, we find that the strong damping of wall friction emerges from the co-existence of slip and waviness at the coating interface, and the latter is a key factor to obtain almost complete wall drag reduction across laminar and turbulent flow regimes. Our magnetic fluid film is promising and ready to be applied in energy-saving and antifouling strategies in fluid transport and medical devices.The turbulent skin friction drag at the solid/liquid interface results in high electric energy consumption when conveying liquids through hydraulic networks, and efficient drag reduction strategies are still unavailable. The authors coat a channel with a magnetic fluid film and achieve almost complete wall drag reduction of up to 90% across laminar and turbulent flow regimes.

Magnetic fluid film enables almost complete drag reduction across laminar and turbulent flow regimes

Stancanelli, Laura Maria
;
2024

Abstract

In the race to curb energy and oil consumption, zeroing of wall frictional forces is highly desirable. The turbulent skin friction drag at the solid/liquid interface is responsible for substantial energy losses when conveying liquids through hydraulic networks, contributing approximately 10% to the global electric energy consumption. Despite extensive research, efficient drag reduction strategies effectively applicable in different flow regimes are still unavailable. Here, we use a wall-attached magnetic fluid film to achieve a wall drag reduction of up to 90% in channel flow. Using optical measurements supported by modelling, we find that the strong damping of wall friction emerges from the co-existence of slip and waviness at the coating interface, and the latter is a key factor to obtain almost complete wall drag reduction across laminar and turbulent flow regimes. Our magnetic fluid film is promising and ready to be applied in energy-saving and antifouling strategies in fluid transport and medical devices.The turbulent skin friction drag at the solid/liquid interface results in high electric energy consumption when conveying liquids through hydraulic networks, and efficient drag reduction strategies are still unavailable. The authors coat a channel with a magnetic fluid film and achieve almost complete wall drag reduction of up to 90% across laminar and turbulent flow regimes.
File in questo prodotto:
File Dimensione Formato  
Stancanelli_et_al2024_Comm_Phys_manuscript.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 4.11 MB
Formato Adobe PDF
4.11 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3515780
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
  • OpenAlex ND
social impact