The palladium-catalyzed (3 + 2) cycloaddition reaction between vinylcyclopropanes (VCPs) bearing geminal EWG’s and imines represents a straightforward and flexible entry to polysubstituted pyrrolidine derivatives. In this paper, we demonstrate that using a synergistic catalysis approach, based on the combination of phosphoric acid and palladium catalysts, it is possible to engage for the first time N-aryl and N-benzyl imines in this cycloaddition reaction. A range of polysubstituted pyrrolidines is obtained with moderate to good yields and diastereoselectivities, using a simple palladium species (Pd(PPh3)4) and an archetypical phosphoric acid as catalyst combination. A two-step scheme which exploits the same palladium catalyst for two consecutive and mechanistically distinct reactions (the cycloaddition and a Suzuki–Miyaura cross-coupling) is also presented. This synergistic catalysis approach is well posited for the development of the enantioselective version of this reaction. A screening of common BINOL-derived chiral phosphoric acids as catalyst component identified a species giving the product with moderate, yet promising, enantioselectivity (64% ee).

Synergistic palladium-phosphoric acid catalysis in (3 + 2) cycloaddition reactions between vinylcyclopropanes and imines

Corti V.
;
2020

Abstract

The palladium-catalyzed (3 + 2) cycloaddition reaction between vinylcyclopropanes (VCPs) bearing geminal EWG’s and imines represents a straightforward and flexible entry to polysubstituted pyrrolidine derivatives. In this paper, we demonstrate that using a synergistic catalysis approach, based on the combination of phosphoric acid and palladium catalysts, it is possible to engage for the first time N-aryl and N-benzyl imines in this cycloaddition reaction. A range of polysubstituted pyrrolidines is obtained with moderate to good yields and diastereoselectivities, using a simple palladium species (Pd(PPh3)4) and an archetypical phosphoric acid as catalyst combination. A two-step scheme which exploits the same palladium catalyst for two consecutive and mechanistically distinct reactions (the cycloaddition and a Suzuki–Miyaura cross-coupling) is also presented. This synergistic catalysis approach is well posited for the development of the enantioselective version of this reaction. A screening of common BINOL-derived chiral phosphoric acids as catalyst component identified a species giving the product with moderate, yet promising, enantioselectivity (64% ee).
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3515175
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact