A novel strategy for the direct enantioselective oxidative homocoupling of α-branched aldehydes is presented. The methodology employs open-shell intermediates for the construction of chiral 1,4-dialdehydes by forming a carbon–carbon bond connecting two quaternary stereogenic centers in good yields and excellent stereoselectivities for electron-rich aromatic aldehydes. The 1,4-dialdehydes were transformed into synthetically valuable chiral pyrrolidines. Experimental mechanistic investigations based on competition experiments combined with computational studies indicate that the reaction proceeds through a radical cation intermediate and that reactivity and stereoselectivity follow different trends.

Direct Enantio- and Diastereoselective Oxidative Homocoupling of Aldehydes

Corti V.;
2018

Abstract

A novel strategy for the direct enantioselective oxidative homocoupling of α-branched aldehydes is presented. The methodology employs open-shell intermediates for the construction of chiral 1,4-dialdehydes by forming a carbon–carbon bond connecting two quaternary stereogenic centers in good yields and excellent stereoselectivities for electron-rich aromatic aldehydes. The 1,4-dialdehydes were transformed into synthetically valuable chiral pyrrolidines. Experimental mechanistic investigations based on competition experiments combined with computational studies indicate that the reaction proceeds through a radical cation intermediate and that reactivity and stereoselectivity follow different trends.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3515166
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 26
social impact