Chiral eight-membered carbocycles are important motifs in organic chemistry, natural product chemistry, chemical biology, and medicinal chemistry. The lack of synthetic methods toward their construction is a challenge preventing their rational design and stereoselective synthesis. The catalytic enantioselective [4 + 4] cycloaddition is one of the most straightforward and atom economical methods to obtain chiral cyclooctadiene derivatives. We report the first organocatalytic asymmetric [4 + 4] cycloaddition of 9H-fluorene-1-carbaldehydes with electron-deficient dienes affording cyclooctadiene derivatives in good yields and with excellent control of peri-, diastereo-, and enantioselectivities. The reaction concept is based on the aminocatalytic formation of a polarized butadiene component incorporated into a cyclic extended pi-system, with restricted conformational freedom, allowing for a stereocontrolled [4 + 4] cycloaddition. FMO analysis unveiled that the HOMO and LUMO of the two reacting partners resemble those of butadiene. The methodology allows for the construction of cyclooctadiene derivatives decorated with various functionalities. The cyclooctadienes were synthetically elaborated, allowing for structural diversity demonstrating their synthetic utility for the formation of, for example, chiral cyclobutene-or cyclooctane scaffolds. DFT computational studies shed light on the reaction mechanism identifying the preference for an initial but reversible [4 + 2] cycloaddition delivering an off-cycle catalyst resting state, from which catalyst elimination is not possible. The off cycle catalyst-bound intermediate undergoes a retro-[4 + 2] cycloaddition, followed by a [4 + 4] cycloaddition generating a cycloadduct from which catalyst elimination is possible. The reaction pathway accounts for the observed peri-, diastereo-, and enantioselectivity of the organocatalytic [4 + 4] cycloaddition.

Organocatalytic Enantioselective Thermal [4 $\mathplus$ 4] Cycloadditions

Vasco Corti;
2023

Abstract

Chiral eight-membered carbocycles are important motifs in organic chemistry, natural product chemistry, chemical biology, and medicinal chemistry. The lack of synthetic methods toward their construction is a challenge preventing their rational design and stereoselective synthesis. The catalytic enantioselective [4 + 4] cycloaddition is one of the most straightforward and atom economical methods to obtain chiral cyclooctadiene derivatives. We report the first organocatalytic asymmetric [4 + 4] cycloaddition of 9H-fluorene-1-carbaldehydes with electron-deficient dienes affording cyclooctadiene derivatives in good yields and with excellent control of peri-, diastereo-, and enantioselectivities. The reaction concept is based on the aminocatalytic formation of a polarized butadiene component incorporated into a cyclic extended pi-system, with restricted conformational freedom, allowing for a stereocontrolled [4 + 4] cycloaddition. FMO analysis unveiled that the HOMO and LUMO of the two reacting partners resemble those of butadiene. The methodology allows for the construction of cyclooctadiene derivatives decorated with various functionalities. The cyclooctadienes were synthetically elaborated, allowing for structural diversity demonstrating their synthetic utility for the formation of, for example, chiral cyclobutene-or cyclooctane scaffolds. DFT computational studies shed light on the reaction mechanism identifying the preference for an initial but reversible [4 + 2] cycloaddition delivering an off-cycle catalyst resting state, from which catalyst elimination is not possible. The off cycle catalyst-bound intermediate undergoes a retro-[4 + 2] cycloaddition, followed by a [4 + 4] cycloaddition generating a cycloadduct from which catalyst elimination is possible. The reaction pathway accounts for the observed peri-, diastereo-, and enantioselectivity of the organocatalytic [4 + 4] cycloaddition.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3515161
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact