This paper reviews the most common situations in which the regularity conditions that underlie classical likelihood-based parametric inference fail, focusing on the large-sample properties of the likelihood ratio statistic. We identify three main classes of problems: boundary problems, indeterminate parameter problems—which include nonidentifiable parameters and singular information matrices—and change-point problems. We emphasise analytical solutions, consider software implementations where available, and summarise how the key results are derived.

Likelihood Asymptotics in Nonregular Settings: A Review with Emphasis on the Likelihood Ratio

Brazzale, Alessandra R.
;
2024

Abstract

This paper reviews the most common situations in which the regularity conditions that underlie classical likelihood-based parametric inference fail, focusing on the large-sample properties of the likelihood ratio statistic. We identify three main classes of problems: boundary problems, indeterminate parameter problems—which include nonidentifiable parameters and singular information matrices—and change-point problems. We emphasise analytical solutions, consider software implementations where available, and summarise how the key results are derived.
2024
File in questo prodotto:
File Dimensione Formato  
Brazzale.Mameli_2024_StatSci.pdf

Accesso riservato

Tipologia: Published (publisher's version)
Licenza: Accesso privato - non pubblico
Dimensione 627.3 kB
Formato Adobe PDF
627.3 kB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3514481
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact