In statistical process monitoring, control charts typically depend on a set of tuning parameters besides its control limit(s). Proper selection of these tuning parameters is crucial to their performance. In a specific application, a control chart is often designed for detecting a target process distributional shift. In such cases, the tuning parameters should be chosen such that some characteristic of the out-of-control (OC) run length of the chart, such as its aver- age, is minimized for detecting the target shift, while the control limit is set to maintain a desired in-control (IC) performance. However, explicit solutions for such a design are unavailable for most control charts, and thus numerical optimization methods are needed. In such cases, Monte Carlo-based methods are often a viable alternative for finding suitable design constants. The computational cost associated with such scenarios is often substantial, and thus computational efficiency is a key requirement. To address this problem, a two-step design based on stochastic approximations is presented in this paper, which is shown to be much more computationally efficient than some representative existing methods. A detailed discussion about the new algorithm’s implementation along with some examples are provided to demonstrate the broad applicability of the proposed methodology for the optimal design of univariate and multivariate control charts. Computer codes in the Julia programming language are also provided in the supplemental material.

Optimal constrained design of control charts using stochastic approximations

Zago, Daniele
Membro del Collaboration Group
;
Capizzi, Giovanna
Membro del Collaboration Group
;
2024

Abstract

In statistical process monitoring, control charts typically depend on a set of tuning parameters besides its control limit(s). Proper selection of these tuning parameters is crucial to their performance. In a specific application, a control chart is often designed for detecting a target process distributional shift. In such cases, the tuning parameters should be chosen such that some characteristic of the out-of-control (OC) run length of the chart, such as its aver- age, is minimized for detecting the target shift, while the control limit is set to maintain a desired in-control (IC) performance. However, explicit solutions for such a design are unavailable for most control charts, and thus numerical optimization methods are needed. In such cases, Monte Carlo-based methods are often a viable alternative for finding suitable design constants. The computational cost associated with such scenarios is often substantial, and thus computational efficiency is a key requirement. To address this problem, a two-step design based on stochastic approximations is presented in this paper, which is shown to be much more computationally efficient than some representative existing methods. A detailed discussion about the new algorithm’s implementation along with some examples are provided to demonstrate the broad applicability of the proposed methodology for the optimal design of univariate and multivariate control charts. Computer codes in the Julia programming language are also provided in the supplemental material.
File in questo prodotto:
File Dimensione Formato  
main-nonblind_240528_090740.pdf

embargo fino al 05/04/2025

Tipologia: Postprint (accepted version)
Licenza: Creative commons
Dimensione 1.55 MB
Formato Adobe PDF
1.55 MB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3514365
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact