Oligodendrocytes are extensively coupled to astrocytes, a phenomenon ensuring glial homeostasis and maintenance of central nervous system myelin. Molecular disruption of this communication occurs in demyelinating diseases such as multiple sclerosis. Less is known about the vulnerability and reconstruction of the panglial network during adult demyelination-remyelination. Here, we took advantage of lysolcithininduced demyelination to investigate the expression dynamics of the oligodendrocyte specific connexin 47 (Cx47) and to some extent that of astrocyte Cx43, and whether this dynamic could be modulated by grafted induced pluripotent stem cell (iPSC)- neural progeny. Our data show that disruption of Cx43-Cx47 mediated heterocellular gap-junction intercellular communication following demyelination is larger in size than demyelination. Loss of Cx47 expression is timely rescued during remyelination and accelerated by the grafted neural precursors. Moreover, mouse and human iPSC-derived oligodendrocytes express Cx47, which co-labels with astrocyte Cx43, indicating their integration into the panglial network. These data suggest that in rodents, full lesion repair following transplantation occurs by panglial reconstruction in addition to remyelination. Targeting panglial elements by cell therapy or pharmacological compounds may help accelerating or stabilizing re/myelination in myelin disorders.
Beneficial contribution of induced pluripotent stem cell-progeny to Connexin 47 dynamics during demyelination-remyelination
Laterza Cecilia;
2021
Abstract
Oligodendrocytes are extensively coupled to astrocytes, a phenomenon ensuring glial homeostasis and maintenance of central nervous system myelin. Molecular disruption of this communication occurs in demyelinating diseases such as multiple sclerosis. Less is known about the vulnerability and reconstruction of the panglial network during adult demyelination-remyelination. Here, we took advantage of lysolcithininduced demyelination to investigate the expression dynamics of the oligodendrocyte specific connexin 47 (Cx47) and to some extent that of astrocyte Cx43, and whether this dynamic could be modulated by grafted induced pluripotent stem cell (iPSC)- neural progeny. Our data show that disruption of Cx43-Cx47 mediated heterocellular gap-junction intercellular communication following demyelination is larger in size than demyelination. Loss of Cx47 expression is timely rescued during remyelination and accelerated by the grafted neural precursors. Moreover, mouse and human iPSC-derived oligodendrocytes express Cx47, which co-labels with astrocyte Cx43, indicating their integration into the panglial network. These data suggest that in rodents, full lesion repair following transplantation occurs by panglial reconstruction in addition to remyelination. Targeting panglial elements by cell therapy or pharmacological compounds may help accelerating or stabilizing re/myelination in myelin disorders.File | Dimensione | Formato | |
---|---|---|---|
2020 Glia.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
3.13 MB
Formato
Adobe PDF
|
3.13 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.