Age-related hearing loss (ARHL) is the most prevalent sensory disorder in the elderly. Currently, no treatment can effectively prevent or reverse ARHL. Aging auditory organs are often accompanied by exacerbated oxidative stress and metabolic deterioration. Here, we report the effect of deuterated oxygen (D2O), also known as “heavy water”, mouse models of ARHL. Supplementing the normal mouse diet with 10% D2O from 4 to 9 weeks of age lowered hearing thresholds at selected frequencies in treated mice compared to untreated control group. Oxidative stress levels were significantly reduced and in the cochlear duct of treated vs. untreated mice. Through metabolic flux analysis, we found that D2O mainly slowed down catabolic reactions, and may delay metabolic deterioration related to aging to a certain extent. Experiments confirmed that the Nrf2/HO-1/glutathione axis was down-regulated in treated mice. Thus, D2O supplementation can hinder ARHL progression in mouse models by slowing the pace of metabolism and reducing endogenous oxidative stress production in the cochlea. These findings open new avenues for protecting the cochlea from oxidative stress and regulating metabolism to prevent ARHL.

Dietary intake of deuterium oxide decreases cochlear metabolism and oxidative stress levels in a mouse model of age-related hearing loss

Chen J.;Mammano F.
Membro del Collaboration Group
;
Yang J.
2022

Abstract

Age-related hearing loss (ARHL) is the most prevalent sensory disorder in the elderly. Currently, no treatment can effectively prevent or reverse ARHL. Aging auditory organs are often accompanied by exacerbated oxidative stress and metabolic deterioration. Here, we report the effect of deuterated oxygen (D2O), also known as “heavy water”, mouse models of ARHL. Supplementing the normal mouse diet with 10% D2O from 4 to 9 weeks of age lowered hearing thresholds at selected frequencies in treated mice compared to untreated control group. Oxidative stress levels were significantly reduced and in the cochlear duct of treated vs. untreated mice. Through metabolic flux analysis, we found that D2O mainly slowed down catabolic reactions, and may delay metabolic deterioration related to aging to a certain extent. Experiments confirmed that the Nrf2/HO-1/glutathione axis was down-regulated in treated mice. Thus, D2O supplementation can hinder ARHL progression in mouse models by slowing the pace of metabolism and reducing endogenous oxidative stress production in the cochlea. These findings open new avenues for protecting the cochlea from oxidative stress and regulating metabolism to prevent ARHL.
2022
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2213231722002440-main.pdf

accesso aperto

Descrizione: Articolo in PDF
Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 8.7 MB
Formato Adobe PDF
8.7 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3513742
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact