Deep learning models dealing with image understanding in real-world settings must be able to adapt to a wide variety of tasks across different domains. Domain adaptation and class incremental learning deal with domain and task variability separately, whereas their unified solution is still an open problem. We tackle both facets of the problem together, taking into account the semantic shift within both input and label spaces. We start by formally introducing continual learning under task and domain shift. Then, we address the proposed setup by using style transfer techniques to extend knowledge across domains when learning incremental tasks and a robust distillation framework to effectively recollect task knowledge under incremental domain shift. The devised framework (LwS, Learning with Style) is able to generalize incrementally acquired task knowledge across all the domains encountered, proving to be robust against catastrophic forgetting. Extensive experimental evaluation on multipl...
Learning with Style: Continual Semantic Segmentation Across Tasks and Domains
Umberto Michieli;Pietro Zanuttigh
2024
Abstract
Deep learning models dealing with image understanding in real-world settings must be able to adapt to a wide variety of tasks across different domains. Domain adaptation and class incremental learning deal with domain and task variability separately, whereas their unified solution is still an open problem. We tackle both facets of the problem together, taking into account the semantic shift within both input and label spaces. We start by formally introducing continual learning under task and domain shift. Then, we address the proposed setup by using style transfer techniques to extend knowledge across domains when learning incremental tasks and a robust distillation framework to effectively recollect task knowledge under incremental domain shift. The devised framework (LwS, Learning with Style) is able to generalize incrementally acquired task knowledge across all the domains encountered, proving to be robust against catastrophic forgetting. Extensive experimental evaluation on multipl...File | Dimensione | Formato | |
---|---|---|---|
Learning_With_Style_Continual_Semantic_Segmentation_Across_Tasks_and_Domains.pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Creative commons
Dimensione
4.63 MB
Formato
Adobe PDF
|
4.63 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.