This cross-sectional study aimed to investigate whether athletes (ATHL) and non-athletes (NON-ATHL) individuals had similar accuracy in matching intended to actual force during ballistic (BAL) and tonic (TON) isometric contractions. In this cross-sectional study, the subjects were divided into ATHL (n = 20; 22.4 +/- 2.3 yrs; 73.2 +/- 15.7 kg; 1.76 +/- 0.08 m) and NON-ATHL (n = 20; 24.6 +/- 2.4 yrs; 68.2 +/- 15.0 kg; 1.73 +/- 0.1 m) groups. The isometric quadriceps strength was measured with a load cell applied to a custom-built chair. For each condition, subjects performed at first three maximal voluntary isometric contractions (MVIC) as reference. Then, subjects had to match three intended force intensities expressed in percentage of the MVIC (i.e., 25%, 50%, and 75%) without any external feedback. Subjects performed three trials for each force intensity. The accuracy (AC) was calculated as the absolute difference in percentage between the intended and the actual force. A Likert scale was administered for each trial to assess the subjective matching between the intended and the actual force. Statistical analysis showed that the ATHL group was more accurate (p < 0.001) than the NON-ATHL group. In contrast, the AC (p < 0.001) was lower when the force intensities increased independently from the group. Moreover, significantly higher AC (p < 0.001) and lower aggregate Likert scores (p < 0.001) were found in BAL than TON conditions. These results suggest that (i) sports practice could enhance muscle recruitment strategies by increasing the AC in the isometric task; (ii) differences between intended and actual force appeared to be intensity-dependent with lower AC at high force intensities; (iii) different control systems act in modulating BAL and TON contractions.
Relationship between intended force and actual force: comparison between athletes and non-athletes
Rizzato A.;Paoli A.;Bisiacchi P.;Marcolin G.
2024
Abstract
This cross-sectional study aimed to investigate whether athletes (ATHL) and non-athletes (NON-ATHL) individuals had similar accuracy in matching intended to actual force during ballistic (BAL) and tonic (TON) isometric contractions. In this cross-sectional study, the subjects were divided into ATHL (n = 20; 22.4 +/- 2.3 yrs; 73.2 +/- 15.7 kg; 1.76 +/- 0.08 m) and NON-ATHL (n = 20; 24.6 +/- 2.4 yrs; 68.2 +/- 15.0 kg; 1.73 +/- 0.1 m) groups. The isometric quadriceps strength was measured with a load cell applied to a custom-built chair. For each condition, subjects performed at first three maximal voluntary isometric contractions (MVIC) as reference. Then, subjects had to match three intended force intensities expressed in percentage of the MVIC (i.e., 25%, 50%, and 75%) without any external feedback. Subjects performed three trials for each force intensity. The accuracy (AC) was calculated as the absolute difference in percentage between the intended and the actual force. A Likert scale was administered for each trial to assess the subjective matching between the intended and the actual force. Statistical analysis showed that the ATHL group was more accurate (p < 0.001) than the NON-ATHL group. In contrast, the AC (p < 0.001) was lower when the force intensities increased independently from the group. Moreover, significantly higher AC (p < 0.001) and lower aggregate Likert scores (p < 0.001) were found in BAL than TON conditions. These results suggest that (i) sports practice could enhance muscle recruitment strategies by increasing the AC in the isometric task; (ii) differences between intended and actual force appeared to be intensity-dependent with lower AC at high force intensities; (iii) different control systems act in modulating BAL and TON contractions.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.