The endoplasmic reticulum (ER) contacts mitochondria through specialized subdomains called mitochondria-associated membranes (MAMs) at mitochondria-ER contact sites (MERCs). These contacts are vital for lipid and calcium transfer, maintaining organelle homeostasis. A handful of probes exist to study MERC formation and dynamics. GFP complementation probes induce irreversible artificial tethering due to low Kd values. FRET-based probes, while reversible, pose challenges for in vitro and in vivo imaging, limiting simultaneous fluorophore wavelengths. To overcome these limitations, we developed STACCATO, a probe array enabling MERC imaging across diverse interorganellar distances. STACCATO employs a split version of the 14 kDa Fluorescence-Activating and Absorption-Shifting Tag (FAST) protein, evolved from the photoactive yellow protein (PYP). It fluoresces when the ER- and mitochondria-targeted components of SplitFAST complement each other and is bound to the cell-permeant, non-fluorescent fluorogenic chromophores derived from 4-hydroxybenzylidene rhodanine (HBR). STACCATO ensures a high signal-to-noise ratio, does not induce artificial tethering and allows imaging of MERCs at different distances and across various regions of the fluorescence spectrum. STACCATO is a versatile probe for comprehensive MERC analysis.

Imaging various interorganellar distances with STACCATO, a reversible, multispectral Split-FAST Mitochondria-ER Contacts probe

Satoko Shinjo;Luca Scorrano
2023

Abstract

The endoplasmic reticulum (ER) contacts mitochondria through specialized subdomains called mitochondria-associated membranes (MAMs) at mitochondria-ER contact sites (MERCs). These contacts are vital for lipid and calcium transfer, maintaining organelle homeostasis. A handful of probes exist to study MERC formation and dynamics. GFP complementation probes induce irreversible artificial tethering due to low Kd values. FRET-based probes, while reversible, pose challenges for in vitro and in vivo imaging, limiting simultaneous fluorophore wavelengths. To overcome these limitations, we developed STACCATO, a probe array enabling MERC imaging across diverse interorganellar distances. STACCATO employs a split version of the 14 kDa Fluorescence-Activating and Absorption-Shifting Tag (FAST) protein, evolved from the photoactive yellow protein (PYP). It fluoresces when the ER- and mitochondria-targeted components of SplitFAST complement each other and is bound to the cell-permeant, non-fluorescent fluorogenic chromophores derived from 4-hydroxybenzylidene rhodanine (HBR). STACCATO ensures a high signal-to-noise ratio, does not induce artificial tethering and allows imaging of MERCs at different distances and across various regions of the fluorescence spectrum. STACCATO is a versatile probe for comprehensive MERC analysis.
2023
EMBO workshop: Inter-organelle contacts biology
EMBO workshop: Inter-organelle contacts biology
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3512000
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact