The endoplasmic reticulum (ER) contacts mitochondria through specialized subdomains called mitochondria-associated membranes (MAMs) at mitochondria-ER contact sites (MERCs). These contacts are vital for lipid and calcium transfer, maintaining organelle homeostasis. A handful of probes exist to study MERC formation and dynamics. GFP complementation probes induce irreversible artificial tethering due to low Kd values. FRET-based probes, while reversible, pose challenges for in vitro and in vivo imaging, limiting simultaneous fluorophore wavelengths. To overcome these limitations, we developed STACCATO, a probe array enabling MERC imaging across diverse interorganellar distances. STACCATO employs a split version of the 14 kDa Fluorescence-Activating and Absorption-Shifting Tag (FAST) protein, evolved from the photoactive yellow protein (PYP). It fluoresces when the ER- and mitochondria-targeted components of SplitFAST complement each other and is bound to the cell-permeant, non-fluorescent fluorogenic chromophores derived from 4-hydroxybenzylidene rhodanine (HBR). STACCATO ensures a high signal-to-noise ratio, does not induce artificial tethering and allows imaging of MERCs at different distances and across various regions of the fluorescence spectrum. STACCATO is a versatile probe for comprehensive MERC analysis.

Imaging various interorganellar distances with STACCATO, a reversible, multispectral Split-FAST Mitochondria-ER Contacts probe

Satoko Shinjo;Luca Scorrano
2024

Abstract

The endoplasmic reticulum (ER) contacts mitochondria through specialized subdomains called mitochondria-associated membranes (MAMs) at mitochondria-ER contact sites (MERCs). These contacts are vital for lipid and calcium transfer, maintaining organelle homeostasis. A handful of probes exist to study MERC formation and dynamics. GFP complementation probes induce irreversible artificial tethering due to low Kd values. FRET-based probes, while reversible, pose challenges for in vitro and in vivo imaging, limiting simultaneous fluorophore wavelengths. To overcome these limitations, we developed STACCATO, a probe array enabling MERC imaging across diverse interorganellar distances. STACCATO employs a split version of the 14 kDa Fluorescence-Activating and Absorption-Shifting Tag (FAST) protein, evolved from the photoactive yellow protein (PYP). It fluoresces when the ER- and mitochondria-targeted components of SplitFAST complement each other and is bound to the cell-permeant, non-fluorescent fluorogenic chromophores derived from 4-hydroxybenzylidene rhodanine (HBR). STACCATO ensures a high signal-to-noise ratio, does not induce artificial tethering and allows imaging of MERCs at different distances and across various regions of the fluorescence spectrum. STACCATO is a versatile probe for comprehensive MERC analysis.
2024
Keystone symposia, Organelle membrane contact sites in health and disease
Keystone symposia, Organelle membrane contact sites in health and disease
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3511999
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact