Background. The root of a plant is a fundamental organ for the multisensory perception of the environment. Investigating root growth dynamics as a mean of their interaction with the environment is of key importance for improving knowledge in plant behaviour, plant biology and agriculture. To date, it is difficult to study roots movements from a dynamic perspective given that available technologies for root imaging focus mostly on static characterizations, lacking temporal and three-dimensional (3D) spatial information. This paper describes a new system based on time-lapse for the 3D reconstruction and analysis of roots growing in hydroponics. Results. The system is based on infrared stereo-cameras acquiring time-lapse images of the roots for 3D reconstruction. The acquisition protocol guarantees the root growth in complete dark while the upper part of the plant grows in normal light conditions. The system extracts the 3D trajectory of the root tip and a set of descriptive features in both the temporal and frequency domains. The system has been used on Zea mays L. (B73) during the first week of growth and shows good inter-reliability between operators with an Intra Class Correlation Coefficient (ICC) > 0.9 for all features extracted. It also showed measurement accuracy with a median difference of < 1 mm between computed and manually measured root length. Conclusions. The system and the protocol presented in this study enable accurate 3D analysis of primary root growth in hydroponics. It can serve as a valuable tool for analysing real-time root responses to environmental stimuli thus improving knowledge on the processes contributing to roots physiological and phenotypic plasticity.

A system for the study of roots 3D kinematics in hydroponic culture: a study on the oscillatory features of root tip

Simonetti, Valentina
;
Ravazzolo, Laura;Ruperti, Benedetto;Quaggiotti, Silvia;Castiello, Umberto
2024

Abstract

Background. The root of a plant is a fundamental organ for the multisensory perception of the environment. Investigating root growth dynamics as a mean of their interaction with the environment is of key importance for improving knowledge in plant behaviour, plant biology and agriculture. To date, it is difficult to study roots movements from a dynamic perspective given that available technologies for root imaging focus mostly on static characterizations, lacking temporal and three-dimensional (3D) spatial information. This paper describes a new system based on time-lapse for the 3D reconstruction and analysis of roots growing in hydroponics. Results. The system is based on infrared stereo-cameras acquiring time-lapse images of the roots for 3D reconstruction. The acquisition protocol guarantees the root growth in complete dark while the upper part of the plant grows in normal light conditions. The system extracts the 3D trajectory of the root tip and a set of descriptive features in both the temporal and frequency domains. The system has been used on Zea mays L. (B73) during the first week of growth and shows good inter-reliability between operators with an Intra Class Correlation Coefficient (ICC) > 0.9 for all features extracted. It also showed measurement accuracy with a median difference of < 1 mm between computed and manually measured root length. Conclusions. The system and the protocol presented in this study enable accurate 3D analysis of primary root growth in hydroponics. It can serve as a valuable tool for analysing real-time root responses to environmental stimuli thus improving knowledge on the processes contributing to roots physiological and phenotypic plasticity.
2024
File in questo prodotto:
File Dimensione Formato  
A_system_for_the_study_of_roots_3D_kinematics_in_h-3.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 3.27 MB
Formato Adobe PDF
3.27 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3511764
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact