We show existence of fundamental domains which minimize a general perimeter functional in a homogeneous metric measure space. In some cases, which include the usual perimeter in the universal cover of a closed Riemannian manifold, and the fractional perimeter in R^n, we can prove regularity of the minimal domains. As a byproduct of our analysis we obtain that a countable partition which is minimal for the fractional perimeter is locally finite and regular, extending a result previously known for the local perimeter. Finally, in the planar case we provide a detailed description of the fundamental domains which are minimal for a general anisotropic perimeter.

Periodic partitions with minimal perimeter

Cesaroni, Annalisa
;
2024

Abstract

We show existence of fundamental domains which minimize a general perimeter functional in a homogeneous metric measure space. In some cases, which include the usual perimeter in the universal cover of a closed Riemannian manifold, and the fractional perimeter in R^n, we can prove regularity of the minimal domains. As a byproduct of our analysis we obtain that a countable partition which is minimal for the fractional perimeter is locally finite and regular, extending a result previously known for the local perimeter. Finally, in the planar case we provide a detailed description of the fundamental domains which are minimal for a general anisotropic perimeter.
2024
File in questo prodotto:
File Dimensione Formato  
NA23cesaroninovaga.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 634.86 kB
Formato Adobe PDF
634.86 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3511703
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact