Software Defined Networking (SDN) is a recent network architecture based on the separation of forwarding functions from network logic, and provides high flexibility in the management of the network. In this paper, we show how an attacker can exploit SDN programmability to obtain detailed knowledge about the network behaviour. In particular, we introduce a novel attack, named Know Your Enemy (KYE), which allows an attacker to gather vital information about the configuration of the network. Through the KYE attack, an attacker can obtain information ranging from the configuration of security tools, such as attack detection thresholds for network scanning, to general network policies like QoS and network virtualization. Additionally, we show that the KYE attack can be performed in a stealthy fashion, allowing an attacker to learn configuration secrets without being detected. We underline that the vulnerability exploited by the KYE attack is proper of SDN and is not present in legacy networks. Finally, we address the KYE attack by proposing an active defense countermeasure based on network flows obfuscation, which considerably increases the complexity for a successful attack. Our solution offers provable security guarantees that can be tailored to the needs of the specific network under consideration.
A Novel Stealthy Attack to Gather SDN Configuration-Information
Conti M.;
2020
Abstract
Software Defined Networking (SDN) is a recent network architecture based on the separation of forwarding functions from network logic, and provides high flexibility in the management of the network. In this paper, we show how an attacker can exploit SDN programmability to obtain detailed knowledge about the network behaviour. In particular, we introduce a novel attack, named Know Your Enemy (KYE), which allows an attacker to gather vital information about the configuration of the network. Through the KYE attack, an attacker can obtain information ranging from the configuration of security tools, such as attack detection thresholds for network scanning, to general network policies like QoS and network virtualization. Additionally, we show that the KYE attack can be performed in a stealthy fashion, allowing an attacker to learn configuration secrets without being detected. We underline that the vulnerability exploited by the KYE attack is proper of SDN and is not present in legacy networks. Finally, we address the KYE attack by proposing an active defense countermeasure based on network flows obfuscation, which considerably increases the complexity for a successful attack. Our solution offers provable security guarantees that can be tailored to the needs of the specific network under consideration.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.