We introduce and study the class of CBI-time-changed Lévy processes (CBITCL), obtained by time-changing a Lévy process with respect to an integrated continuous-state branching process with immigration (CBI). We characterize CBITCL processes as solutions to a certain stochastic integral equation and relate them to affine stochastic volatility processes. We provide a complete analysis of the time of explosion of exponential moments of CBITCL processes and study their asymptotic behavior. In addition, we show that CBITCL processes are stable with respect to a suitable class of equivalent changes of measure. As illustrated by some examples, CBITCL processes are flexible and tractable processes with a significant potential for applications in finance.
CBI-time-changed Lévy processes
Fontana, Claudio;
2023
Abstract
We introduce and study the class of CBI-time-changed Lévy processes (CBITCL), obtained by time-changing a Lévy process with respect to an integrated continuous-state branching process with immigration (CBI). We characterize CBITCL processes as solutions to a certain stochastic integral equation and relate them to affine stochastic volatility processes. We provide a complete analysis of the time of explosion of exponential moments of CBITCL processes and study their asymptotic behavior. In addition, we show that CBITCL processes are stable with respect to a suitable class of equivalent changes of measure. As illustrated by some examples, CBITCL processes are flexible and tractable processes with a significant potential for applications in finance.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.