Plexcitons constitute a peculiar example of light-matter hybrids (polaritons) originating from the (strong) coupling of plasmonic modes and molecular excitations. Here we propose a fully quantum approach to model plexcitonic systems and test it against existing experiments on peculiar hybrids formed by Au nanoparticles and a well-known porphyrin derivative, involving the Q branch of the organic dye absorption spectrum. Our model extends simpler descriptions of polaritonic systems to account for the multilevel structure of the dyes, spatially varying interactions with a given plasmon mode, and the simultaneous occurrence of plasmon-molecule and intermolecular interactions. By keeping a molecularly detailed view, we were able to gain insights into the local structure and individual contributions to the resulting plexcitons. Our model can be applied to rationalize and predict energy funneling toward specific molecular sites within a plexcitonic assembly, which is highly valuable for designing and controlling chemical transformations in the new polaritonic landscapes.
Molecularly Detailed View of Strong Coupling in Supramolecular Plexcitonic Nanohybrids
Parolin, Giovanni;Peruffo, Nicola;Mancin, Fabrizio;Collini, Elisabetta;Corni, Stefano
2024
Abstract
Plexcitons constitute a peculiar example of light-matter hybrids (polaritons) originating from the (strong) coupling of plasmonic modes and molecular excitations. Here we propose a fully quantum approach to model plexcitonic systems and test it against existing experiments on peculiar hybrids formed by Au nanoparticles and a well-known porphyrin derivative, involving the Q branch of the organic dye absorption spectrum. Our model extends simpler descriptions of polaritonic systems to account for the multilevel structure of the dyes, spatially varying interactions with a given plasmon mode, and the simultaneous occurrence of plasmon-molecule and intermolecular interactions. By keeping a molecularly detailed view, we were able to gain insights into the local structure and individual contributions to the resulting plexcitons. Our model can be applied to rationalize and predict energy funneling toward specific molecular sites within a plexcitonic assembly, which is highly valuable for designing and controlling chemical transformations in the new polaritonic landscapes.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.