The origin of the apparent negative charge at hydrophobic–water interfaces has fueled debates in the physical chemistry community for decades. The most common interpretation given to explain this observation is that negatively charged hydroxide ions (OH–) bind strongly to the interfaces. Using first principles calculations of extended air–water and oil–water interfaces, we unravel a mechanism that does not require the presence of OH–. Small amounts of charge transfer along hydrogen bonds and asymmetries in the hydrogen bond network due to topological defects can lead to the accumulation of negative surface charge at both interfaces. For water near oil, some spillage of electron density into the oil phase is also observed. The computed surface charge densities at both interfaces is approximately −0.015e∕nm2 in agreement with electrophoretic experiments. We also show, using an energy decomposition analysis, that the electronic origin of this phenomena is rooted in a collective polarization/charge transfer effect.

Charge transfer as a ubiquitous mechanism in determining the negative charge at hydrophobic interfaces

Poli E.
;
2020

Abstract

The origin of the apparent negative charge at hydrophobic–water interfaces has fueled debates in the physical chemistry community for decades. The most common interpretation given to explain this observation is that negatively charged hydroxide ions (OH–) bind strongly to the interfaces. Using first principles calculations of extended air–water and oil–water interfaces, we unravel a mechanism that does not require the presence of OH–. Small amounts of charge transfer along hydrogen bonds and asymmetries in the hydrogen bond network due to topological defects can lead to the accumulation of negative surface charge at both interfaces. For water near oil, some spillage of electron density into the oil phase is also observed. The computed surface charge densities at both interfaces is approximately −0.015e∕nm2 in agreement with electrophoretic experiments. We also show, using an energy decomposition analysis, that the electronic origin of this phenomena is rooted in a collective polarization/charge transfer effect.
File in questo prodotto:
File Dimensione Formato  
Charge_transfer_Nat_Comm.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 4.85 MB
Formato Adobe PDF
4.85 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3509966
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 83
  • ???jsp.display-item.citation.isi??? 84
  • OpenAlex ND
social impact