A family of novel thermally activated delayed fluorescence (TADF) emitters has been synthesized by a straightforward and metal-free synthesis, and structurally characterized. In this work we kept the acceptor moiety, 4-(1H-imidazol-1-yl)benzonitrile, fixed and systemically tested different donors to correlate their photophysical and electrochemical properties with their performance in electrochemiluminescence using both benzoyl peroxide as co-reactant and co-reactant free (annihilation) conditions. Some compounds exceeded the efficiency of the standard [Ru(bpy)3]Cl2 by up to 28 times with benzoyl peroxide and 38 times in annihilation. Interestingly, we found that the efficiency is mainly dictated by the electrochemical reversibility of the redox processes rather than by the photophysical properties in terms of photoluminescence quantum yields or excited-state lifetime. In addition, the annihilation electrochemiluminescence efficiency strongly depends on the pulse sequence. The imidazole moiety can be conveniently alkylated, thus allowing the insertion of functional groups, such a carboxylic acid, and enabling practical applications.

Highly Efficient Electrochemiluminescence from Imidazole-Based Thermally Activated Delayed Fluorescence Emitters

Pavan G.;Morgan L.;Alberoni C.;Scattolin T.
;
Aliprandi A.
2023

Abstract

A family of novel thermally activated delayed fluorescence (TADF) emitters has been synthesized by a straightforward and metal-free synthesis, and structurally characterized. In this work we kept the acceptor moiety, 4-(1H-imidazol-1-yl)benzonitrile, fixed and systemically tested different donors to correlate their photophysical and electrochemical properties with their performance in electrochemiluminescence using both benzoyl peroxide as co-reactant and co-reactant free (annihilation) conditions. Some compounds exceeded the efficiency of the standard [Ru(bpy)3]Cl2 by up to 28 times with benzoyl peroxide and 38 times in annihilation. Interestingly, we found that the efficiency is mainly dictated by the electrochemical reversibility of the redox processes rather than by the photophysical properties in terms of photoluminescence quantum yields or excited-state lifetime. In addition, the annihilation electrochemiluminescence efficiency strongly depends on the pulse sequence. The imidazole moiety can be conveniently alkylated, thus allowing the insertion of functional groups, such a carboxylic acid, and enabling practical applications.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3509959
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
  • OpenAlex ND
social impact