The classical multivariate extreme-value theory concerns the modeling of extremes in a multivariate random sample, suggesting the use of max-stable distributions. In this work, the classical theory is extended to the case where aggregated data, such as maxima of a random number of observations, are considered. We derive a limit theorem concerning the attractors for the distributions of the aggregated data, which boil down to a new family of max-stable distributions. We also connect the extremal dependence structure of classical max-stable distributions and that of our new family of max-stable distributions. Using an inversion method, we derive a semiparametric composite-estimator for the extremal dependence of the unobservable data, starting from a preliminary estimator of the extremal dependence of the aggregated data. Furthermore, we develop the large-sample theory of the composite-estimator and illustrate its finite-sample performance via a simulation study.

Multivariate extremes over a random number of observations

Rizzelli, Stefano
2021

Abstract

The classical multivariate extreme-value theory concerns the modeling of extremes in a multivariate random sample, suggesting the use of max-stable distributions. In this work, the classical theory is extended to the case where aggregated data, such as maxima of a random number of observations, are considered. We derive a limit theorem concerning the attractors for the distributions of the aggregated data, which boil down to a new family of max-stable distributions. We also connect the extremal dependence structure of classical max-stable distributions and that of our new family of max-stable distributions. Using an inversion method, we derive a semiparametric composite-estimator for the extremal dependence of the unobservable data, starting from a preliminary estimator of the extremal dependence of the aggregated data. Furthermore, we develop the large-sample theory of the composite-estimator and illustrate its finite-sample performance via a simulation study.
File in questo prodotto:
File Dimensione Formato  
Hashorva, Padoan and Rizzelli (2021) SJOS - Article and supplement.pdf

Accesso riservato

Tipologia: Published (Publisher's Version of Record)
Licenza: Accesso privato - non pubblico
Dimensione 2.03 MB
Formato Adobe PDF
2.03 MB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3509541
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact