Competing risks survival analysis is used to answer questions about the time to occurrence of events with the extension of multiple causes of failure. Studies that investigate how clinical features and risk factors of COVID-19 are associated with the survival of patients in the presence of competing risks (CRs) are limited. The main objective of this paper is, under a CRs setting, to estimate the Cumulative Incidence Function (CIF) of COVID-19 death, the CIF of other-causes death, and the probability of being cured in subjects with COVID-19, who have been under observation from the date of symptoms to the date of death or exit from the study because they are cured. In particular, we compared the non-parametric estimator of the CIF based on the naive technique of Kaplan-Meier (K-M) with the Aalen-Johansen estimator based on the cause-specific approach. Moreover, we compared two of the most popular regression approaches for CRs data: the cause-specific hazard (CSH) and the sub-distribution hazard (SDH) approaches. A clear overestimation of the CIF function over time was observed under the K-M estimation technique. Moreover, exposure to asthma, diabetes, obesity, older age, male sex, black and indigenous races, absence of flu vaccine, admission to the ICU, and the presence of other risk factors, such as immunosuppression and chronic kidney, neurological, liver, and lung diseases, significantly increased the probability of COVID-19 death. The highest hazard ratio of 2.03 was observed for subjects with an age greater than 70 years compared with subjects aged 50-60 years. The SDH approach showed slightly higher survival probabilities compared with the CSH approach. An important foundation for producing precise individualized predictions was provided by the competing risks regression models discussed in this paper. This foundation allowed us, in general, to more realistically model complex data, such as the COVID-19 data, and can be used, for instance, by many modern statistical learning and personalized medicine techniques to obtain more accurate conclusions.

Cumulative Incidence Functions for Competing Risks Survival Data from Subjects with COVID-19

Haque, Mohammad Anamul
;
Cortese, Giuliana
2023

Abstract

Competing risks survival analysis is used to answer questions about the time to occurrence of events with the extension of multiple causes of failure. Studies that investigate how clinical features and risk factors of COVID-19 are associated with the survival of patients in the presence of competing risks (CRs) are limited. The main objective of this paper is, under a CRs setting, to estimate the Cumulative Incidence Function (CIF) of COVID-19 death, the CIF of other-causes death, and the probability of being cured in subjects with COVID-19, who have been under observation from the date of symptoms to the date of death or exit from the study because they are cured. In particular, we compared the non-parametric estimator of the CIF based on the naive technique of Kaplan-Meier (K-M) with the Aalen-Johansen estimator based on the cause-specific approach. Moreover, we compared two of the most popular regression approaches for CRs data: the cause-specific hazard (CSH) and the sub-distribution hazard (SDH) approaches. A clear overestimation of the CIF function over time was observed under the K-M estimation technique. Moreover, exposure to asthma, diabetes, obesity, older age, male sex, black and indigenous races, absence of flu vaccine, admission to the ICU, and the presence of other risk factors, such as immunosuppression and chronic kidney, neurological, liver, and lung diseases, significantly increased the probability of COVID-19 death. The highest hazard ratio of 2.03 was observed for subjects with an age greater than 70 years compared with subjects aged 50-60 years. The SDH approach showed slightly higher survival probabilities compared with the CSH approach. An important foundation for producing precise individualized predictions was provided by the competing risks regression models discussed in this paper. This foundation allowed us, in general, to more realistically model complex data, such as the COVID-19 data, and can be used, for instance, by many modern statistical learning and personalized medicine techniques to obtain more accurate conclusions.
2023
File in questo prodotto:
File Dimensione Formato  
mathematics-2023.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 500.15 kB
Formato Adobe PDF
500.15 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3509354
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact