In the last years, monoclonal antibodies (mAbs) have rapidly escalated as biopharmaceuticals into cancer treatments, mainly for their target specificity accompanied by less side effects than the traditional chemotherapy, and stimulation of reliable long-term anti-tumoral responses. They are potentially unstable macromolecules under shaking, temperature fluctuations, humidity, and indoor and outdoor light exposure, all stressors occurring throughout their production, transport, storage, handling, and administration steps. The chemical and physical modifications of mAbs can lead not only to the loss of their bioactivity, but also to the enhancement of their immunogenicity with increasing risk of severe hypersensitivity reactions in treated patients because of aggregation. The photostability of Nivolumab, the active principle of Opdivo, has been here studied. The chemical modifications detected by LC-MS/MS after the light stressor showed Trp and Met mono and double oxidations as primary damage induced by light on this mAb. The oxidations were stronger when the mAb was diluted in sterile glucose solution where 5-HMF, a major heat glucose degradation product, acted as singlet oxygen producer under irradiation. However, no significant changes in the mAb conformation were found. On the contrary, formation of a significant extent of aggregates has been detected after shining high simulated sunlight doses. This again took place particularly when Nivolumab was diluted in sterile glucose, thus raising a direct correlation between the aggregation and the oxidative processes. Finally, the biological activity under light stress assessed by a blockade assay test demonstrated the maintenance of the PD-1 target recognition even under high light doses and in glucose solution, in line with the preservation of the secondary and tertiary structures of the mAb. Based on our results, as sterile glucose is mostly used for children’s therapies, special warnings, and precautions for healthcare professionals should be included for their use to the pediatric population.

Towards a better understanding of light-glucose induced modifications on the structure and biological activity of formulated Nivolumab

Rizzotto, Elena
Formal Analysis
;
Menilli, Luca
Methodology
;
Polverino de Laureto, Patrizia
Project Administration
;
Miolo, Giorgia
Project Administration
2024

Abstract

In the last years, monoclonal antibodies (mAbs) have rapidly escalated as biopharmaceuticals into cancer treatments, mainly for their target specificity accompanied by less side effects than the traditional chemotherapy, and stimulation of reliable long-term anti-tumoral responses. They are potentially unstable macromolecules under shaking, temperature fluctuations, humidity, and indoor and outdoor light exposure, all stressors occurring throughout their production, transport, storage, handling, and administration steps. The chemical and physical modifications of mAbs can lead not only to the loss of their bioactivity, but also to the enhancement of their immunogenicity with increasing risk of severe hypersensitivity reactions in treated patients because of aggregation. The photostability of Nivolumab, the active principle of Opdivo, has been here studied. The chemical modifications detected by LC-MS/MS after the light stressor showed Trp and Met mono and double oxidations as primary damage induced by light on this mAb. The oxidations were stronger when the mAb was diluted in sterile glucose solution where 5-HMF, a major heat glucose degradation product, acted as singlet oxygen producer under irradiation. However, no significant changes in the mAb conformation were found. On the contrary, formation of a significant extent of aggregates has been detected after shining high simulated sunlight doses. This again took place particularly when Nivolumab was diluted in sterile glucose, thus raising a direct correlation between the aggregation and the oxidative processes. Finally, the biological activity under light stress assessed by a blockade assay test demonstrated the maintenance of the PD-1 target recognition even under high light doses and in glucose solution, in line with the preservation of the secondary and tertiary structures of the mAb. Based on our results, as sterile glucose is mostly used for children’s therapies, special warnings, and precautions for healthcare professionals should be included for their use to the pediatric population.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0378517324001601-main.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 10.16 MB
Formato Adobe PDF
10.16 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3509003
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact