In this paper, we consider an optimal impulsive control problem with intermediate state constraints. The peculiarity of the problem consists in a non-standard way of specifying of intermediate constraints. So the constraints must be satisfied for at least one selection of a set-valued solution to the impulsive control system. We prove a theorem for the existence of an optimal control and propose the reduction procedure that transforms the initial optimal control problem with intermediate constraints into a hybrid problem with control parameters. This hybrid problem gives an equivalent description of the optimal impulsive control problem. We discuss a numerical algorithm based on a direct collocation method and give a schema to the corresponding numerical calculations for a test example.

Optimization of impulsive control systems with intermediate state constraints

Pogodaev N. I.;
2021

Abstract

In this paper, we consider an optimal impulsive control problem with intermediate state constraints. The peculiarity of the problem consists in a non-standard way of specifying of intermediate constraints. So the constraints must be satisfied for at least one selection of a set-valued solution to the impulsive control system. We prove a theorem for the existence of an optimal control and propose the reduction procedure that transforms the initial optimal control problem with intermediate constraints into a hybrid problem with control parameters. This hybrid problem gives an equivalent description of the optimal impulsive control problem. We discuss a numerical algorithm based on a direct collocation method and give a schema to the corresponding numerical calculations for a test example.
File in questo prodotto:
File Dimensione Formato  
Maltugueva et al. - 2021 - Optimization of impulsive control systems with int.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 893.97 kB
Formato Adobe PDF
893.97 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3508867
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact