Large language models (LLMs) are demonstrating impressive performance on many reasoning and problem-solving tasks from cognitive psychology. When tested, their accuracy is often on par with average neurotypical adults, challenging long-standing critiques of associative models. Here we analyse recent findings at the intersection of LLMs and cognitive science. Here we discuss how modern LLMs resurrect associationist principles, with abilities like long-distance associations enabling complex reasoning. While limitations remain in areas like causal cognition and planning, phenomena like emergence suggest room for growth. Providing examples and increasing the dimensions of the network are methods that further improve LLM abilities, mirroring facilitation effects in human cognition. Analysis of LLMs errors provides insight into human cognitive biases. Overall, we argue LLMs represent a promising development for cognitive modelling, enabling new explorations of the mechanisms underlying intelligence and reasoning from an associationist point of view. Carefully evaluating LLMs with the tools of cognitive psychology will further understand the building blocks of the human mind.
Language models and psychological sciences
Sartori, Giuseppe;
2023
Abstract
Large language models (LLMs) are demonstrating impressive performance on many reasoning and problem-solving tasks from cognitive psychology. When tested, their accuracy is often on par with average neurotypical adults, challenging long-standing critiques of associative models. Here we analyse recent findings at the intersection of LLMs and cognitive science. Here we discuss how modern LLMs resurrect associationist principles, with abilities like long-distance associations enabling complex reasoning. While limitations remain in areas like causal cognition and planning, phenomena like emergence suggest room for growth. Providing examples and increasing the dimensions of the network are methods that further improve LLM abilities, mirroring facilitation effects in human cognition. Analysis of LLMs errors provides insight into human cognitive biases. Overall, we argue LLMs represent a promising development for cognitive modelling, enabling new explorations of the mechanisms underlying intelligence and reasoning from an associationist point of view. Carefully evaluating LLMs with the tools of cognitive psychology will further understand the building blocks of the human mind.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.