We compute three-term semiclassical asymptotic expansions of counting functions and Riesz-means of the eigenvalues of the Laplacian on spheres and hemispheres, for both Dirichlet and Neumann boundary conditions. Specifically for Riesz-means we prove upper and lower bounds involving asymptotically sharp shift terms, and we extend them to domains of S-d. We also prove a Berezin-Li-Yau inequality for domains contained in the hemisphere S-+(2).

Semiclassical Estimates for Eigenvalue Means of Laplacians on Spheres

Luzzini, Paolo;
2023

Abstract

We compute three-term semiclassical asymptotic expansions of counting functions and Riesz-means of the eigenvalues of the Laplacian on spheres and hemispheres, for both Dirichlet and Neumann boundary conditions. Specifically for Riesz-means we prove upper and lower bounds involving asymptotically sharp shift terms, and we extend them to domains of S-d. We also prove a Berezin-Li-Yau inequality for domains contained in the hemisphere S-+(2).
File in questo prodotto:
File Dimensione Formato  
BuLuPrSt23.pdf

accesso aperto

Descrizione: Arxiv Preprint
Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3507471
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact