We compute three-term semiclassical asymptotic expansions of counting functions and Riesz-means of the eigenvalues of the Laplacian on spheres and hemispheres, for both Dirichlet and Neumann boundary conditions. Specifically for Riesz-means we prove upper and lower bounds involving asymptotically sharp shift terms, and we extend them to domains of S-d. We also prove a Berezin-Li-Yau inequality for domains contained in the hemisphere S-+(2).
Semiclassical Estimates for Eigenvalue Means of Laplacians on Spheres
Luzzini, Paolo;
2023
Abstract
We compute three-term semiclassical asymptotic expansions of counting functions and Riesz-means of the eigenvalues of the Laplacian on spheres and hemispheres, for both Dirichlet and Neumann boundary conditions. Specifically for Riesz-means we prove upper and lower bounds involving asymptotically sharp shift terms, and we extend them to domains of S-d. We also prove a Berezin-Li-Yau inequality for domains contained in the hemisphere S-+(2).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
BuLuPrSt23.pdf
accesso aperto
Descrizione: Arxiv Preprint
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
1.27 MB
Formato
Adobe PDF
|
1.27 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.