The design and fabrication of eco-friendly and cost-effective (photo)electrocatalysts for the oxygen evolution reaction (OER) is a key research goal for a proper management of water splitting to address the global energy crisis. In this work, we focus on the preparation of supported MnO2/graphitic carbon nitride (g-CN) OER (photo)electrocatalysts by means of a novel preparation strategy. The proposed route consists of the plasma enhanced-chemical vapor deposition (PE-CVD) of MnO2 nanoarchitectures on porous Ni scaffolds, the anchoring of controllable g-CN amounts by an amenable electrophoretic deposition (EPD) process, and the ultimate thermal treatment in air. The inherent method versatility and flexibility afforded defective MnO2/g-CN nanoarchitectures, featuring a g-CN content and nano-organization tunable as a function of EPD duration and the used carbon nitride precursor. Such a modulation had a direct influence on OER functional performances, which, for the best composite system, corresponded to an overpotential of 430 mV at 10 mA/cm(2), a Tafel slope of approximate to 70 mV/dec, and a turnover frequency of 6.52 x 10(-3) s(-1), accompanied by a very good time stability. The present outcomes, comparing favorably with previous results on analogous systems, were rationalized on the basis of the formation of type-II MnO2/g-CN heterojunctions, and yield valuable insights into this class of green (photo)electrocatalysts for end uses in solar-to-fuel conversion and water treatment.

Controllable Anchoring of Graphitic Carbon Nitride on MnO2 Nanoarchitectures for Oxygen Evolution Electrocatalysis

Benedet, Mattia;Maccato, Chiara;Rizzi, Gian Andrea;Gasparotto, Alberto
2023

Abstract

The design and fabrication of eco-friendly and cost-effective (photo)electrocatalysts for the oxygen evolution reaction (OER) is a key research goal for a proper management of water splitting to address the global energy crisis. In this work, we focus on the preparation of supported MnO2/graphitic carbon nitride (g-CN) OER (photo)electrocatalysts by means of a novel preparation strategy. The proposed route consists of the plasma enhanced-chemical vapor deposition (PE-CVD) of MnO2 nanoarchitectures on porous Ni scaffolds, the anchoring of controllable g-CN amounts by an amenable electrophoretic deposition (EPD) process, and the ultimate thermal treatment in air. The inherent method versatility and flexibility afforded defective MnO2/g-CN nanoarchitectures, featuring a g-CN content and nano-organization tunable as a function of EPD duration and the used carbon nitride precursor. Such a modulation had a direct influence on OER functional performances, which, for the best composite system, corresponded to an overpotential of 430 mV at 10 mA/cm(2), a Tafel slope of approximate to 70 mV/dec, and a turnover frequency of 6.52 x 10(-3) s(-1), accompanied by a very good time stability. The present outcomes, comparing favorably with previous results on analogous systems, were rationalized on the basis of the formation of type-II MnO2/g-CN heterojunctions, and yield valuable insights into this class of green (photo)electrocatalysts for end uses in solar-to-fuel conversion and water treatment.
File in questo prodotto:
File Dimensione Formato  
reprint_MnO2.pdf

accesso aperto

Descrizione: reprint - publisher's version
Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 3.43 MB
Formato Adobe PDF
3.43 MB Adobe PDF Visualizza/Apri
reprint_MnO2_ESI.pdf

accesso aperto

Descrizione: supporting information - publisher's version
Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.44 MB
Formato Adobe PDF
1.44 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3507449
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 27
  • OpenAlex ND
social impact