We define a BV-type space in the setting of Carnot groups (i.e., simply connected Lie groups with stratified nilpotent Lie algebra) that allows one to characterize all distributions F for which there exists a continuous horizontal vector field & phi;, vanishing at infinity, that solves the equation divH & phi; = F. This generalizes to the setting of Carnot groups some results by De Pauw and Pfeffer, [13], and by De Pauw and Torres, [14], for the Euclidean setting.

THE DISTRIBUTIONAL DIVERGENCE OF HORIZONTAL VECTOR FIELDS VANISHING AT INFINITY ON CARNOT GROUPS

Montefalcone F.
2023

Abstract

We define a BV-type space in the setting of Carnot groups (i.e., simply connected Lie groups with stratified nilpotent Lie algebra) that allows one to characterize all distributions F for which there exists a continuous horizontal vector field & phi;, vanishing at infinity, that solves the equation divH & phi; = F. This generalizes to the setting of Carnot groups some results by De Pauw and Pfeffer, [13], and by De Pauw and Torres, [14], for the Euclidean setting.
2023
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3507390
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact