Electrochemically active oxide-based anodes capable of working in Single-Chamber Solid Oxide Fuel Cells (SC-SOFCs) were developed. Their performance is related to the selectivity of the electrodes. Tests are carried out on lab-scale devices with YSZ pellets as solid electrolytes in electrolyte supported cells. Selecting methane as a fuel, a gas mixture in the ratio CH4/O2 = 2 was chosen. The Ni-YSZ (NiO:YSZ=60:40) anode was optimized through CeO2 nanocatalysts infiltration to enhance the anode catalytic activity and make its reduction easier. Several infiltration amounts were compared, from null to 15% of the electrode weight. Both symmetric and complete cells (with LSCF-based cathodes) were tested in H2 and CH4/O2. For increasing amounts of infiltrated CeO2, symmetric cells tests describe an area specific resistance (ASR) reduction from 40 Ω cm2 to 1.7 Ω cm2 in hydrogen and from 11 Ω cm2 to 3.9 Ω cm2 in the methane/oxygen mixture. While complete cells tests displayed an ASR drop from 30 Ω cm2 to 2.9 Ω cm2 in H2, and from 8.7 Ω cm2 to 4.3 Ω cm2 in the methane/oxygen mixture, while OCP and power grew from 478 mV and 3.7 mW cm-2 to 766 mV and 13 mW cm-2
Comparison of different infiltration amounts of CeO2 inside Ni-YSZ anodes to improve stability and efficiency of Single-Chamber SOFCs operating in methane
Glisenti A.Funding Acquisition
2022
Abstract
Electrochemically active oxide-based anodes capable of working in Single-Chamber Solid Oxide Fuel Cells (SC-SOFCs) were developed. Their performance is related to the selectivity of the electrodes. Tests are carried out on lab-scale devices with YSZ pellets as solid electrolytes in electrolyte supported cells. Selecting methane as a fuel, a gas mixture in the ratio CH4/O2 = 2 was chosen. The Ni-YSZ (NiO:YSZ=60:40) anode was optimized through CeO2 nanocatalysts infiltration to enhance the anode catalytic activity and make its reduction easier. Several infiltration amounts were compared, from null to 15% of the electrode weight. Both symmetric and complete cells (with LSCF-based cathodes) were tested in H2 and CH4/O2. For increasing amounts of infiltrated CeO2, symmetric cells tests describe an area specific resistance (ASR) reduction from 40 Ω cm2 to 1.7 Ω cm2 in hydrogen and from 11 Ω cm2 to 3.9 Ω cm2 in the methane/oxygen mixture. While complete cells tests displayed an ASR drop from 30 Ω cm2 to 2.9 Ω cm2 in H2, and from 8.7 Ω cm2 to 4.3 Ω cm2 in the methane/oxygen mixture, while OCP and power grew from 478 mV and 3.7 mW cm-2 to 766 mV and 13 mW cm-2File | Dimensione | Formato | |
---|---|---|---|
unpaywall-bitstream--72826550
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
884.69 kB
Formato
Unknown
|
884.69 kB | Unknown | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.