This paper presents a possible approach for the LongEval Lab of the CLEF 2023 conference concerning Longitudinal Evaluation of Model Performance. Studies have shown that the performance of Information Retrieval systems decreases as the time gap between the test data and the training data increases. The LongEval Lab focuses on the development of a robust temporal IR system that improves such performance.

SEUPD@CLEF: Team NEON. A Memoryless Approach To Longitudinal Evaluation

Ferro N.
2023

Abstract

This paper presents a possible approach for the LongEval Lab of the CLEF 2023 conference concerning Longitudinal Evaluation of Model Performance. Studies have shown that the performance of Information Retrieval systems decreases as the time gap between the test data and the training data increases. The LongEval Lab focuses on the development of a robust temporal IR system that improves such performance.
2023
CEUR Workshop Proceedings
24th Working Notes of the Conference and Labs of the Evaluation Forum, CLEF-WN 2023
File in questo prodotto:
File Dimensione Formato  
paper-189.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3506610
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact