Lithium-ion (Li-ion) batteries are the primary power source in various applications due to their high energy and power density. Their market was estimated to be up to 48 billion U.S. dollars in 2022. However, the widespread adoption of Li-ion batteries has resulted in counterfeit cell production, which can pose safety hazards to users. Counterfeit cells can cause explosions or fires, and their prevalence in the market makes it difficult for users to detect fake cells. Indeed, current battery authentication methods can be susceptible to advanced counterfeiting techniques and are often not adaptable to various cells and systems. In this paper, we improve the state of the art on battery authentication by proposing two novel methodologies, DCAuth and EISthentication, which leverage the internal characteristics of each cell through Machine Learning models. Our methods automatically authenticate lithium-ion battery models and architectures using data from their regular usage without the need...
Your Battery Is a Blast! Safeguarding Against Counterfeit Batteries with Authentication
Marchiori, Francesco;Conti, Mauro
2023
Abstract
Lithium-ion (Li-ion) batteries are the primary power source in various applications due to their high energy and power density. Their market was estimated to be up to 48 billion U.S. dollars in 2022. However, the widespread adoption of Li-ion batteries has resulted in counterfeit cell production, which can pose safety hazards to users. Counterfeit cells can cause explosions or fires, and their prevalence in the market makes it difficult for users to detect fake cells. Indeed, current battery authentication methods can be susceptible to advanced counterfeiting techniques and are often not adaptable to various cells and systems. In this paper, we improve the state of the art on battery authentication by proposing two novel methodologies, DCAuth and EISthentication, which leverage the internal characteristics of each cell through Machine Learning models. Our methods automatically authenticate lithium-ion battery models and architectures using data from their regular usage without the need...File | Dimensione | Formato | |
---|---|---|---|
3576915.3623179.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Accesso libero
Dimensione
2.31 MB
Formato
Adobe PDF
|
2.31 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.