Context: Speech Emotion Recognition (SER) is a valuable technology that identifies human emotions from spoken language, enabling the development of context-aware and personalized intelligent systems. To protect user privacy, Federated Learning (FL) has been introduced, enabling local training of models on user devices. However, FL raises concerns about the potential exposure of sensitive information from local model parameters, which is especially critical in applications like SER that involve personal voice data. Local Differential Privacy (LDP) has prevented privacy leaks in image and video data. However, it encounters notable accuracy degradation when applied to speech data, especially in the presence of high noise levels. In this paper, we propose an approach called LDP-FL with CSS, which combines LDP with a novel client selection strategy (CSS). By leveraging CSS, we aim to improve the representatives of updates and mitigate the adverse effects of noise on SER accuracy while ensur...

Balancing Privacy and Accuracy in Federated Learning for Speech Emotion Recognition

Nowroozi, Ehsan;Conti, Mauro
2023

Abstract

Context: Speech Emotion Recognition (SER) is a valuable technology that identifies human emotions from spoken language, enabling the development of context-aware and personalized intelligent systems. To protect user privacy, Federated Learning (FL) has been introduced, enabling local training of models on user devices. However, FL raises concerns about the potential exposure of sensitive information from local model parameters, which is especially critical in applications like SER that involve personal voice data. Local Differential Privacy (LDP) has prevented privacy leaks in image and video data. However, it encounters notable accuracy degradation when applied to speech data, especially in the presence of high noise levels. In this paper, we propose an approach called LDP-FL with CSS, which combines LDP with a novel client selection strategy (CSS). By leveraging CSS, we aim to improve the representatives of updates and mitigate the adverse effects of noise on SER accuracy while ensur...
2023
Proceedings of the 18th Conference on Computer Science and Intelligence Systems
18th Conference on Computer Science and Intelligence Systems, FedCSIS 2023
9788396744784
File in questo prodotto:
File Dimensione Formato  
444.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3506537
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact