Context: Speech Emotion Recognition (SER) is a valuable technology that identifies human emotions from spoken language, enabling the development of context-aware and personalized intelligent systems. To protect user privacy, Federated Learning (FL) has been introduced, enabling local training of models on user devices. However, FL raises concerns about the potential exposure of sensitive information from local model parameters, which is especially critical in applications like SER that involve personal voice data. Local Differential Privacy (LDP) has prevented privacy leaks in image and video data. However, it encounters notable accuracy degradation when applied to speech data, especially in the presence of high noise levels. In this paper, we propose an approach called LDP-FL with CSS, which combines LDP with a novel client selection strategy (CSS). By leveraging CSS, we aim to improve the representatives of updates and mitigate the adverse effects of noise on SER accuracy while ensur...
Balancing Privacy and Accuracy in Federated Learning for Speech Emotion Recognition
Nowroozi, Ehsan;Conti, Mauro
2023
Abstract
Context: Speech Emotion Recognition (SER) is a valuable technology that identifies human emotions from spoken language, enabling the development of context-aware and personalized intelligent systems. To protect user privacy, Federated Learning (FL) has been introduced, enabling local training of models on user devices. However, FL raises concerns about the potential exposure of sensitive information from local model parameters, which is especially critical in applications like SER that involve personal voice data. Local Differential Privacy (LDP) has prevented privacy leaks in image and video data. However, it encounters notable accuracy degradation when applied to speech data, especially in the presence of high noise levels. In this paper, we propose an approach called LDP-FL with CSS, which combines LDP with a novel client selection strategy (CSS). By leveraging CSS, we aim to improve the representatives of updates and mitigate the adverse effects of noise on SER accuracy while ensur...| File | Dimensione | Formato | |
|---|---|---|---|
|
444.pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Creative commons
Dimensione
1.15 MB
Formato
Adobe PDF
|
1.15 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




