Modern HIV-1 treatment effectively suppresses viral amplification in people living with HIV. However, the persistence of HIV-1 DNA as proviruses integrated into the human genome remains the main barrier to achieving a cure. Next-generation sequencing (NGS) offers increased sensitivity for characterising archived drug resistance mutations (DRMs) in HIV-1 DNA for improved treatment options. In this study, we present an ultra-sensitive targeted PCR assay coupled with NGS and a robust pipeline to characterise HIV-1 DNA DRMs from buffy coat samples. Our evaluation supports the use of this assay for Pan-HIV-1 analyses with reliable detection of DRMs across the HIV-1 Pol region. We propose this assay as a new valuable tool for monitoring archived HIV-1 drug resistance in virologically suppressed individuals, especially in clinical trials investigating novel therapeutic approaches.

Sensitive HIV-1 DNA Pol Next-Generation Sequencing for the Characterisation of Archived Antiretroviral Drug Resistance

Giaquinto, Carlo;
2023

Abstract

Modern HIV-1 treatment effectively suppresses viral amplification in people living with HIV. However, the persistence of HIV-1 DNA as proviruses integrated into the human genome remains the main barrier to achieving a cure. Next-generation sequencing (NGS) offers increased sensitivity for characterising archived drug resistance mutations (DRMs) in HIV-1 DNA for improved treatment options. In this study, we present an ultra-sensitive targeted PCR assay coupled with NGS and a robust pipeline to characterise HIV-1 DNA DRMs from buffy coat samples. Our evaluation supports the use of this assay for Pan-HIV-1 analyses with reliable detection of DRMs across the HIV-1 Pol region. We propose this assay as a new valuable tool for monitoring archived HIV-1 drug resistance in virologically suppressed individuals, especially in clinical trials investigating novel therapeutic approaches.
2023
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3506018
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact