This paper deals with the dynamic factor analysis problem for an ARMA process. To robustly estimate the number of factors, we construct a confidence region centered in a finite sample estimate of the underlying model which contains the true model with a prescribed probability. In this confidence region, the problem, formulated as a rank minimization of a suitable spectral density, is efficiently approximated via a trace norm convex relaxation. The latter is addressed by resorting to the Lagrange duality theory, which allows to prove the existence of solutions. Finally, a numerical algorithm to solve the dual problem is presented. The effectiveness of the proposed estimator is assessed through simulation studies both with synthetic and real data.

A Robust Approach to ARMA Factor Modeling

Falconi, Lucia;Ferrante, Augusto;Zorzi, Mattia
2024

Abstract

This paper deals with the dynamic factor analysis problem for an ARMA process. To robustly estimate the number of factors, we construct a confidence region centered in a finite sample estimate of the underlying model which contains the true model with a prescribed probability. In this confidence region, the problem, formulated as a rank minimization of a suitable spectral density, is efficiently approximated via a trace norm convex relaxation. The latter is addressed by resorting to the Lagrange duality theory, which allows to prove the existence of solutions. Finally, a numerical algorithm to solve the dual problem is presented. The effectiveness of the proposed estimator is assessed through simulation studies both with synthetic and real data.
File in questo prodotto:
File Dimensione Formato  
A_Robust_Approach_to_ARMA_Factor_Modeling.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.25 MB
Formato Adobe PDF
1.25 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3505745
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact