Fiber photometry is increasingly utilized to monitor fluorescent sensors of neural activity in the brain. However, most implementations are based on flat-cleaved optical fibers that can only interface with shallow tissue volumes adjacent to the fiber. We exploit modal properties of tapered optical fibers (TFs) to enable light collection over an extent of up to 2 mm of tissue and multisite photometry along the taper. Using a single TF, we simultaneously observed distinct dopamine transients in dorsal and ventral striatum in freely moving mice performing a simple, operant conditioning task. Collection volumes from TFs can also be engineered in both shape and size by microstructuring the nonplanar surface of the taper, to optically target multiple sites not only in the deep brain but, in general, in any biological system or organ in which light collection is beneficial but challenging because of light scattering and absorption.

Depth-resolved fiber photometry with a single tapered optical fiber implant

Pisano F.
;
2019

Abstract

Fiber photometry is increasingly utilized to monitor fluorescent sensors of neural activity in the brain. However, most implementations are based on flat-cleaved optical fibers that can only interface with shallow tissue volumes adjacent to the fiber. We exploit modal properties of tapered optical fibers (TFs) to enable light collection over an extent of up to 2 mm of tissue and multisite photometry along the taper. Using a single TF, we simultaneously observed distinct dopamine transients in dorsal and ventral striatum in freely moving mice performing a simple, operant conditioning task. Collection volumes from TFs can also be engineered in both shape and size by microstructuring the nonplanar surface of the taper, to optically target multiple sites not only in the deep brain but, in general, in any biological system or organ in which light collection is beneficial but challenging because of light scattering and absorption.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3505492
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 100
  • ???jsp.display-item.citation.isi??? 81
  • OpenAlex ND
social impact