As implantable optical systems recently enabled new approaches to study the brain with optical radiations, tapered optical fibers emerged as promising implantable waveguides to deliver and collect light from sub-cortical structures of the mouse brain.They rely on a specific feature of multimodal fiber optics: as the waveguide narrows, the number of guided modes decreases and the radiation can gradually couple with the environment. This happens along a taper segment whose length can be tailored to match with the depth of functional structures of the mouse brain, and can extend for a few millimeters. This anatomical requirement results in optical systems which have an active area that is very long compared to the wavelength of the light they guide and their behavior is typically estimated by ray tracing simulations, because finite element methods are too computationally demanding. Here we present a computational technique that exploits the beam-envelope method and the cylindrical symmetry of the fibers to provide an efficient and exact calculation of the electric field along the fibers, which may enable the design of neural interfaces optimized to meet different goals.

Numerical Calculation of the Light Propagation in Tapered Optical Fibers for Optical Neural Interfaces

Pisano F.;
2022

Abstract

As implantable optical systems recently enabled new approaches to study the brain with optical radiations, tapered optical fibers emerged as promising implantable waveguides to deliver and collect light from sub-cortical structures of the mouse brain.They rely on a specific feature of multimodal fiber optics: as the waveguide narrows, the number of guided modes decreases and the radiation can gradually couple with the environment. This happens along a taper segment whose length can be tailored to match with the depth of functional structures of the mouse brain, and can extend for a few millimeters. This anatomical requirement results in optical systems which have an active area that is very long compared to the wavelength of the light they guide and their behavior is typically estimated by ray tracing simulations, because finite element methods are too computationally demanding. Here we present a computational technique that exploits the beam-envelope method and the cylindrical symmetry of the fibers to provide an efficient and exact calculation of the electric field along the fibers, which may enable the design of neural interfaces optimized to meet different goals.
2022
File in questo prodotto:
File Dimensione Formato  
Numerical_Calculation_of_the_Light_Propagation_in_Tapered_Optical_Fibers_for_Optical_Neural_Interfaces.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 4.43 MB
Formato Adobe PDF
4.43 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3505491
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact