Ultracold atoms loaded into higher Bloch bands provide an elegant setting for realizing many-body quantum states that spontaneously break time-reversal symmetry through the formation of chiral orbital order. The applicability of this strategy remains nonetheless limited due to the finite lifetime of atoms in high-energy bands. Here we introduce an alternative framework, suitable for bosonic gases, which builds on assembling square plaquettes pierced by a π flux (half a magnetic-flux quantum). This setting is shown to be formally equivalent to an interacting bosonic gas loaded into p orbitals, and we explore the consequences of the resulting chiral orbital order, both for weak and strong on-site interactions. We demonstrate the emergence of a chiral superfluid vortex lattice, exhibiting a long-lived gapped collective mode that is characterized by local chiral currents. This chiral superfluid phase is shown to undergo a phase transition to a chiral Mott insulator for sufficiently strong interactions. Our work establishes coupled π-flux plaquettes as a practical route for the emergence of orbital order and chiral phases of matter.

Chiral orbital order of interacting bosons without higher bands

Di Liberto M.;
2023

Abstract

Ultracold atoms loaded into higher Bloch bands provide an elegant setting for realizing many-body quantum states that spontaneously break time-reversal symmetry through the formation of chiral orbital order. The applicability of this strategy remains nonetheless limited due to the finite lifetime of atoms in high-energy bands. Here we introduce an alternative framework, suitable for bosonic gases, which builds on assembling square plaquettes pierced by a π flux (half a magnetic-flux quantum). This setting is shown to be formally equivalent to an interacting bosonic gas loaded into p orbitals, and we explore the consequences of the resulting chiral orbital order, both for weak and strong on-site interactions. We demonstrate the emergence of a chiral superfluid vortex lattice, exhibiting a long-lived gapped collective mode that is characterized by local chiral currents. This chiral superfluid phase is shown to undergo a phase transition to a chiral Mott insulator for sufficiently strong interactions. Our work establishes coupled π-flux plaquettes as a practical route for the emergence of orbital order and chiral phases of matter.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3505343
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact