Experimental observations unambiguously reveal quasi-frictionless water flow through nanometer-scale carbon nanotubes (CNTs). Classical fluid mechanics is deemed unfit to describe this enhanced flow, and recent investigations indicated that quantum mechanics is required to interpret the extremely weak water-CNT friction. In fact, by quantum scattering, water can only release discrete energy upon excitation of electronic and phononic modes in the CNT. Here, we analyze in detail how a traveling water molecule couples to both plasmon and phonon excitations within a sub-nanometer, periodic CNT. We find that the water molecule needs to exceed a minimum speed threshold of ∼50 m/s in order to scatter against CNT electronic and vibrational modes. Below this threshold, scattering is suppressed, as in standard superfluidity mechanisms. The scattering rates, relevant for faster water molecules, are also estimated.

Quantum-mechanical water-flow enhancement through a sub-nanometer carbon nanotube

Alberto Ambrosetti
;
Pier Luigi Silvestrelli
2023

Abstract

Experimental observations unambiguously reveal quasi-frictionless water flow through nanometer-scale carbon nanotubes (CNTs). Classical fluid mechanics is deemed unfit to describe this enhanced flow, and recent investigations indicated that quantum mechanics is required to interpret the extremely weak water-CNT friction. In fact, by quantum scattering, water can only release discrete energy upon excitation of electronic and phononic modes in the CNT. Here, we analyze in detail how a traveling water molecule couples to both plasmon and phonon excitations within a sub-nanometer, periodic CNT. We find that the water molecule needs to exceed a minimum speed threshold of ∼50 m/s in order to scatter against CNT electronic and vibrational modes. Below this threshold, scattering is suppressed, as in standard superfluidity mechanisms. The scattering rates, relevant for faster water molecules, are also estimated.
File in questo prodotto:
File Dimensione Formato  
JCP_pubblicato.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 6.5 MB
Formato Adobe PDF
6.5 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3505246
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact