We define and analyze the operations of addition and intersection of linear time-invariant systems in the behavioral setting, where systems are viewed as sets of trajectories rather than input–output maps. The classical definition of addition of input–output systems is addition of the outputs with the inputs being equal. In the behavioral setting, addition of systems is defined as addition of all variables. Intersection of linear time-invariant systems was considered before only for the autonomous case in the context of “common dynamics” estimation. We generalize the notion of common dynamics to open systems (systems with inputs) as intersection of behaviors. This is done by proposing trajectory-based definitions. The main results of the paper are (1) characterization of the link between the complexities (number of inputs and order) of the sum and intersection systems, (2) algorithms for computing their kernel and image representations and (3) a duality property of the two operations. Our approach combines polynomial and numerical linear algebra computations.

Addition and intersection of linear time-invariant behaviors

Fazzi A.
;
2023

Abstract

We define and analyze the operations of addition and intersection of linear time-invariant systems in the behavioral setting, where systems are viewed as sets of trajectories rather than input–output maps. The classical definition of addition of input–output systems is addition of the outputs with the inputs being equal. In the behavioral setting, addition of systems is defined as addition of all variables. Intersection of linear time-invariant systems was considered before only for the autonomous case in the context of “common dynamics” estimation. We generalize the notion of common dynamics to open systems (systems with inputs) as intersection of behaviors. This is done by proposing trajectory-based definitions. The main results of the paper are (1) characterization of the link between the complexities (number of inputs and order) of the sum and intersection systems, (2) algorithms for computing their kernel and image representations and (3) a duality property of the two operations. Our approach combines polynomial and numerical linear algebra computations.
File in questo prodotto:
File Dimensione Formato  
Addition-intersection.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 389.93 kB
Formato Adobe PDF
389.93 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3504315
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact