Endometrial cancer (EC) is the most common gynecologic malignancy of the endometrium. This study focuses on EC and normal endometrium phosphoproteome to identify differentially phosphorylated proteins involved in tumorigenic signalling pathways which induce cancer growth. We obtained tissue samples from 8 types I EC at tumour stage 1 and 8 normal endometria. We analyzed the phosphoproteome by two-dimensional differential gel electrophoresis (2D-DIGE), combined with immobilized metal affinity chromatography (IMAC) and mass spectrometry for protein and phosphopeptide identification. Quantities of 34 phosphoproteins enriched by the IMAC approach were significantly different in the EC compared to the endometrium. Validation using Western blotting analysis on 13 patients with type I EC at tumour stage 1 and 13 endometria samples confirmed the altered abundance of HBB, CKB, LDHB, and HSPB1. Three EC samples were used for in-depth identification of phosphoproteins by LC-MS/MS analysis. Bioinformatic analysis revealed several tumorigenic signalling pathways. Our study highlights the involvement of the phosphoproteome in EC tumour growth. Further studies are needed to understand the role of phosphorylation in EC. Our data shed light on mechanisms that still need to be ascertained but could open the path to a new class of drugs that could hinder EC growth.

Phospho-DIGE Identified Phosphoproteins Involved in Pathways Related to Tumour Growth in Endometrial Cancer

Arrigoni, Giorgio;Rocca, Giulia;
2023

Abstract

Endometrial cancer (EC) is the most common gynecologic malignancy of the endometrium. This study focuses on EC and normal endometrium phosphoproteome to identify differentially phosphorylated proteins involved in tumorigenic signalling pathways which induce cancer growth. We obtained tissue samples from 8 types I EC at tumour stage 1 and 8 normal endometria. We analyzed the phosphoproteome by two-dimensional differential gel electrophoresis (2D-DIGE), combined with immobilized metal affinity chromatography (IMAC) and mass spectrometry for protein and phosphopeptide identification. Quantities of 34 phosphoproteins enriched by the IMAC approach were significantly different in the EC compared to the endometrium. Validation using Western blotting analysis on 13 patients with type I EC at tumour stage 1 and 13 endometria samples confirmed the altered abundance of HBB, CKB, LDHB, and HSPB1. Three EC samples were used for in-depth identification of phosphoproteins by LC-MS/MS analysis. Bioinformatic analysis revealed several tumorigenic signalling pathways. Our study highlights the involvement of the phosphoproteome in EC tumour growth. Further studies are needed to understand the role of phosphorylation in EC. Our data shed light on mechanisms that still need to be ascertained but could open the path to a new class of drugs that could hinder EC growth.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3504219
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact