Background: Vestibular schwannoma (VS) surgery may cause facial nerve damage. However, a comprehensive evaluation of post-operative facial outcomes may be difficult to achieve. Surface electromyography (sEMG) is a promising non-invasive evaluation tool. However, its use in the follow-up after VS surgery has not been reported yet. The main objective was to develop and validate a new sEMG application specifically for the post-VS surgery setting. Secondary goals were to provide a systematic description of facial muscle activity after VS surgery and assess the association between sEMG parameters and Sunnybrook scale scores. Methods: Thirty-three patients with facial palsy following VS surgery were included. The clinical outcomes (Sunnybrook symmetry, movement, and synkinesis scores) and sEMG parameters (signal amplitude normalized by the maximal voluntary contraction (NEMG) and sEMG synkinesis score (ESS, number of synkinesis per movement sequence)) were evaluated at the end of the follow-up. Results: In all tested muscles, NEMG variance was significantly higher on the affected side than the contralateral (variance ratio test, p < 0.00001 for each muscle). In total, 30 out of 33 patients (90.9%) showed an ESS ≥ 1 (median: 2.5, IQR: 1.5–3.0). On the affected side, NEMG values positively correlated with both dynamic and overall Sunnybrook scores (Spearman’s model, p < 0.05 for each muscle, except orbicularis oculi). ESS significantly correlated with the Sunnybrook synkinesis score (Spearman’s rho: 0.8268, p < 0.0001). Conclusions: We described and preliminarily validated a novel multiparametric sEMG approach based on both signal amplitude and synkinesis evaluation specifically for oto-neurosurgery. Large-scale studies are mandatory to further characterize the semiological and prognostic value of facial sEMG.
Facial surface electromyography: a novel approach to facial nerve functional evaluation after vestibular schwannoma surgery
Franz L
;Marioni G;Cazzador D;Nicolai P;de Filippis C;Zanoletti E
2024
Abstract
Background: Vestibular schwannoma (VS) surgery may cause facial nerve damage. However, a comprehensive evaluation of post-operative facial outcomes may be difficult to achieve. Surface electromyography (sEMG) is a promising non-invasive evaluation tool. However, its use in the follow-up after VS surgery has not been reported yet. The main objective was to develop and validate a new sEMG application specifically for the post-VS surgery setting. Secondary goals were to provide a systematic description of facial muscle activity after VS surgery and assess the association between sEMG parameters and Sunnybrook scale scores. Methods: Thirty-three patients with facial palsy following VS surgery were included. The clinical outcomes (Sunnybrook symmetry, movement, and synkinesis scores) and sEMG parameters (signal amplitude normalized by the maximal voluntary contraction (NEMG) and sEMG synkinesis score (ESS, number of synkinesis per movement sequence)) were evaluated at the end of the follow-up. Results: In all tested muscles, NEMG variance was significantly higher on the affected side than the contralateral (variance ratio test, p < 0.00001 for each muscle). In total, 30 out of 33 patients (90.9%) showed an ESS ≥ 1 (median: 2.5, IQR: 1.5–3.0). On the affected side, NEMG values positively correlated with both dynamic and overall Sunnybrook scores (Spearman’s model, p < 0.05 for each muscle, except orbicularis oculi). ESS significantly correlated with the Sunnybrook synkinesis score (Spearman’s rho: 0.8268, p < 0.0001). Conclusions: We described and preliminarily validated a novel multiparametric sEMG approach based on both signal amplitude and synkinesis evaluation specifically for oto-neurosurgery. Large-scale studies are mandatory to further characterize the semiological and prognostic value of facial sEMG.File | Dimensione | Formato | |
---|---|---|---|
2024 Facial Surface Electromyography A Novel Approach to Facial.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
2.19 MB
Formato
Adobe PDF
|
2.19 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.